[1] 吴斌, 卢笑蕾, 余建波. 晶圆表面缺陷模式的在线探测与自适应识别研究[J]. 计算机工程与应用, 2016, 52(17): 261-265.
WU B, LU X L, YU J B. Research on online detection and self-adaption recognition of wafer defect patterns[J]. Computer Engineering and Applications, 2016, 52(17): 261-265.
[2] MILLER C. Chip war: the fight for the world’s most critical technology[M]. [S.L.]: Simon and Schuster, 2022.
[3] SUN X F, ZHANG B Y, WANG Y S, et al. A multiscale attention mechanism super-resolution confocal microscopy for wafer defect detection[J]. IEEE Transactions on Automation Science and Engineering, 2024, 22: 1016-1027.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[7] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.
02976, 2022.
[8] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[9] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want toLearn using programmable gradient information[C]//Proceedings of the 2025 European Conference on Computer Vision. Cham: Springer, 2025: 1-21.
[10] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[11] 于志斌, 胡泓. 基于YOLO算法与机器视觉的晶圆片表面缺陷检测研究[J]. 新型工业化, 2021, 11(12): 114-117.
YU Z B, HU H. Research on wafer surface defect detection based on YOLO algorithm and machine vision[J]. The Journal of New Industrialization, 2021, 11(12): 114-117.
[12] TANG C, YIN L J, XIE Y C. Wafer surface defect detection with enhanced YOLOv7[J]. International Journal of Information and Communication Technology, 2024, 25(6): 1-17.
[13] DIAO J X, ZOU L C, ZHANG G H. Wafer defect detection based on improved YOLOv8[C]//Proceedings of the Third International Conference on Electronic Information Engineering and Data Processing, 2024: 1786-1792.
[14] 马金林, 曹浩杰, 马自萍, 等. 改进YOLOv8的带钢缺陷检测[J]. 计算机工程与应用, 2024, 60(21): 183-193.
MA J L, CAO H J, MA Z P, et al. Improving defect detection in YOLOv8 for steel strip[J]. Computer Engineering and Applications, 2024, 60(21): 183-193.
[15] ZHANG J N, LI X T, LI J, et al. Rethinking mobile block for efficient attention-based models[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 1389-1400.
[16] DING X H, ZHANG Y Y, GE Y X, et al. UniRepLKNet: a universal perception large-kernel ConvNet for audio, video, point cloud, time-series and image recognition[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5513-5524.
[17] CHEN Y F, ZHANG C Y, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: 107917.
[18] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[19] ZHANG H, ZHANG S J. Focaler-IoU: more focused intersection over union loss[J]. arXiv:2401.10525, 2024.
[20] ZHANG H, ZHANG S J. Shape-IoU: more accurate metric considering bounding box shape and scale[J]. arXiv:2312.
17663, 2023.
[21] YU J H, JIANG Y N, WANG Z Y, et al. UnitBox: an advanced object detection network[C]//Proceedings of the 24th ACM International Conference on Multimedia. New York: ACM, 2016: 516-520.
[22] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[23] QIN D F, LEICHNER C, DELAKIS M, et al. MobileNetV4: universal models for the mobile ecosystem[C]//Proceedings of the 2025 European Conference on Computer Vision. Cham: Springer, 2025: 78-96.
[24] MA X, DAI X Y, BAI Y, et al. Rewrite the stars[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 5694-5703.
[25] NIE R, SHEN X B, LI Z W, et al. Lightweight coal flow foreign object detection algorithm[C]//Proceedings of the 2024 International Conference on Intelligent Computing. Singapore: Springer, 2024: 393-404.
[26] WANG J L, MENG R F, HUANG Y H, et al. Road defect detection based on improved YOLOv8s model[J]. Scientific Reports, 2024, 14(1): 16758.
[27] DANG C, WANG Z X. RCYOLO: an efficient small target detector for crack detection in tubular topological road structures based on unmanned aerial vehicles[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12731-12744.
[28] ZHANG D, CAO K R, HAN K, et al. PAL-YOLOv8: a lightweight algorithm for insulator defect detection[J]. Electronics, 2024, 13(17): 3500.
[29] SHAN P, LIANG T, ZHI M, et al. AMPNet: an advanced lightweight defect detection network for tiny steel sheets inside mobile phone in industrial scenarios[Z]. 2024.
[30] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[31] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[32] DRAELOS R L, CARIN L. HiResCAM: faithful location representation in visual attention for explainable 3D medical image classification[J]. arXiv:2011.08891, 2020.
[33] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2921-2929.
[34] 遇见数据集. Wafer Defect|半导体制造数据集|缺陷检测数据集[EB/OL]. (2024-10-15)[2024-12-10]. https://www.selectdataset.com/dataset/97ab6d7440128d557bd5652842f0dbfa.
SELECT DATASET. Wafer Defect|Semiconductor manufacturing data set|Defect detection data set[EB/OL]. (2024-10-15)[2024-12-10]. https://www.selectdataset.com/dataset/97ab6d
7440128d557bd5652842f0dbfa. |