[1] DU S, IBRAHIM M, SHEHATA M, et al. Automatic license plate recognition (ALPR): a state-of-the-art review[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(2): 311-325.
[2] 杨鼎鼎, 陈世强, 刘静漪. 基于车牌背景和字符颜色特征的车牌定位算法[J]. 计算机应用与软件, 2018, 35(12): 216-221.
YANG D D, CHEN S Q, LIU J Y. License plate location algorithm based on background and character color feature[J]. Computer Applications and Software, 2018, 35(12): 216-221.
[3] 陈宏照, 谢正光, 卢海伦. 颜色与边缘纹理相结合的车牌定位方法[J]. 现代电子技术, 2018, 41(21): 67-70.
CHEN H Z, XIE Z G, LU H L. License plate location method combining color and edge texture[J]. Modern Electronics Technique, 2018, 41(21): 67-70.
[4] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[5] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[7] 姜策, 胡岸明, 何为. 基于卷积神经网络的车牌定位算法[J]. 激光与光电子学进展, 2020, 57(2): 130-136.
JIANG C, HU A M, HE W. Convolutional-neural-network based license plate location algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(2): 130-136.
[8] 马巧梅, 王明俊, 梁昊然. 复杂场景下基于改进YOLOv3的车牌定位检测算法[J]. 计算机工程与应用, 2021, 57(7): 198-208.
MA Q M, WANG M J, LIANG H R. License plate location detection algorithm based on improved YOLOv3 in complex scenes[J]. Computer Engineering and Applications, 2021, 57(7): 198-208.
[9] XIE L, AHMAD T, JIN L, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 507-517.
[10] HAN J, YAO J, ZHAO J, et al. Multi-oriented and scale-invariant license plate detection based on convolutional neural networks[J]. Sensors, 2019, 19(5): 1175.
[11] 徐光柱, 匡婉, 万秋波, 等. 基于级联CNNs的非约束车牌精确定位[J]. 计算机工程与科学, 2022, 44(9): 1665-1675.
XU G Z, KUANG W, WAN Q B, et al. Accurate location of unconstrained license plate based on cascaded CNNs[J]. Computer Engineering & Science, 2022, 44(9): 1665-1675.
[12] QIN S X, LIU S J. Towards end-to-end car license plate location and recognition in unconstrained scenarios[J]. Neural Computing and Applications, 2022, 34(24): 21551-21566.
[13] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[14] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[15] WANG Q, WU B, ZHU P, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[16] MA J Q, SHAO W Y, HAO Y, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2018, 20(11): 3111-3122.
[17] XU Z B, YANG W, MENG A J, et al. Towards end-to-end license plate detection and recognition: a large dataset and baseline[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 261-277.
[18] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[19] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
[20] LI H, WANG P, SHEN C. Toward end-to-end car license plate detection and recognition with deep neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 1126-1136.
[21] SILVA S M, JUNG C R. License plate detection and recognition in unconstrained scenarios[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 593-609. |