Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (4): 25-42.DOI: 10.3778/j.issn.1002-8331.2403-0315
• Research Hotspots and Reviews • Previous Articles Next Articles
LI Xiaotong, MA Sufen, SHENG Hui, WEI Guohui, LI Xintong
Online:
2025-02-15
Published:
2025-02-14
李小童,马素芬,生慧,魏国辉,李欣桐
LI Xiaotong, MA Sufen, SHENG Hui, WEI Guohui, LI Xintong. Review of Lung CT Image Lesion Region Segmentation Based on Deep Learning[J]. Computer Engineering and Applications, 2025, 61(4): 25-42.
李小童, 马素芬, 生慧, 魏国辉, 李欣桐. 基于深度学习的肺部CT图像病灶区域分割研究综述[J]. 计算机工程与应用, 2025, 61(4): 25-42.
[1] 张晶. 基于3D U-Net的肺结节语义分割算法研究[D]. 杨凌: 西北农林科技大学, 2023. ZHANG J. Research on semantic segmentation algorithm of pulmonary nodules based on 3D U-Net[D]. Yangling: Northwest A & F University, 2023. [2] SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA: A Cancer Journal for Clinicians, 2024, 74(1): 12-49. [3] YING X, GUO H, MA K, et al. X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10611-10620. [4] SHAO J, WANG G, YI L, et al. Deep learning empowers lung cancer screening based on mobile low-dose computed tomography in resource-constrained sites[J]. Frontiers in Bioscience, 2022, 27(7): 212. [5] FU Y, XUE P, XIAO T, et al. Semi-supervised adversarial learning for improving the diagnosis of pulmonary nodules[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 109-120. [6] HSU C T, CHEN C H, HUANG C Y. Image segmentation model detects abdominal aortic calcification in dialysis patients[J]. Journal of the American Society of Nephrology, 2023, 34(11S): 1065. [7] 沈权猷, 张小波, 李文豪, 等. U-Net在肺结节分割中的应用进展[J]. 计算机应用, 2023, 43(S1): 250-257. SHEN Q Y, ZHANG X B, LI W H, et al. Application progress of U-Net in lung nodule segmentation[J]. Journal of Computer Applications, 2023, 43(S1): 250-257. [8] 冯龙锋, 陈英, 周滔辉, 等. CT图像肺及肺病变区域分割方法综述[J]. 中国图象图形学报, 2022, 27(3): 722-749. FENG L F, CHEN Y, ZHOU T H, et al. Review of human lung and lung lesion regions segmentation methods based on CT images[J]. Journal of Image and Graphics, 2022, 27(3): 722-749. [9] ARMATO S G, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931. [10] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13. [11] 贾锋, 薛潺涓, 王欣. 用于肺结节检测和分类的两阶段深度学习方法[J]. 吉林大学学报 (理学版), 2020, 58(2): 329-336. JIA F, XUE C J, WANG X. Two-stage deep learning method for detection and classification of pulmonary nodules[J]. Journal of Jilin University (Science Edition), 2020, 58(2): 329-336. [12] MEDSEG. COVID-19 CT segmentation dataset[EB/OL]. (2020-04-11)[2024-03-11]. http://medicalsegmentation.com/covid19/. [13] FAN D P, ZHOU T, JI G P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637. [14] YANG X, HE X, ZHAO J, et al. COVID-CT-dataset: a CT scan dataset about COVID-19[J]. arXiv:2003.13865, 2020. [15] MA J, WANG Y, AN X, et al. Toward data-efficient learning: a benchmark for COVID-19 CT lung and infection segmentation[J]. Medical Physics, 2021, 48(3): 1197-1210. [16] MOROZOV S P, ANDREYCHENKO A E, BLOKHIN I A, et al. MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic[J]. Digital Diagnostics, 2020, 1(1): 49-59. [17] WANG G, LIU X, LI C, et al. A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2653-2663. [18] StructSeg2019. LC[EB/OL]. (2019-06-15)[2024-03-11]. https://structseg2019.grand-challenge.org/Home/. [19] CHRISTINA SWEETLINE B, VIJAYAKUMARAN C, SAMYDURAI A. Overcoming the challenge of accurate segmentation of lung nodules: a multi-crop CNN approach[J]. Journal of Imaging Informatics in Medicine, 2024, 37(3): 988-1007. [20] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [21] 沈熠婷, 陈昭, 张清华, 等. 全监督和弱监督图网络的病理图像分割[J]. 中国图象图形学报, 2024, 29(3): 697-712. SHEN Y T, CHEN Z, ZHANG Q H, et al. Fully and weakly supervised graph networks for histopathology image segmentation[J]. Journal of Image and Graphics, 2024, 29(3): 697-712. [22] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. [23] LIU H, CAO H, SONG E, et al. A cascaded dual-pathway residual network for lung nodule segmentation in CT images[J]. Physica Medica, 2019, 63: 112-121. [24] HUANG X, SUN W, TSENG T L, et al. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks[J]. Computerized Medical Imaging and Graphics, 2019, 74: 25-36. [25] ODA M, HAYASHI Y, OTAKE Y, et al. Lung infection and normal region segmentation from CT volumes of COVID-19 cases[C]//Proceedings SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, 2021: 682-687. [26] MU N, WANG H, ZHANG Y, et al. Progressive global perception and local polishing network for lung infection segmentation of COVID-19 CT images[J]. Pattern Recognition, 2021, 120: 108168. [27] USMAN M, SHIN Y G. DEHA-net: a dual-encoder-based hard attention network with an adaptive ROI mechanism for lung nodule segmentation[J]. Sensors, 2023, 23(4): 1989. [28] USMAN M, LEE B D, BYON S S, et al. Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning[J]. Scientific Reports, 2020, 10(1): 12839. [29] POLAT H. A modified DeepLabV3+ based semantic segmentation of chest computed tomography images for COVID-19 lung infections[J]. International Journal of Imaging Systems and Technology, 2022, 32(5): 1481-1495. [30] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851. [31] BUDAK ü, ??BUK M, C?MERT Z, et al. Efficient COVID-19 segmentation from CT slices exploiting semantic segmentation with integrated attention mechanism[J]. Journal of Digital Imaging, 2021, 34(2): 263-272. [32] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [33] ZHANG J, LIU Y, WU Q, et al. SWTRU: star-shaped window transformer reinforced U-Net for medical image segmentation[J]. Computers in Biology and Medicine, 2022, 150: 105954. [34] 吴骏, 侯宪哲, 王健, 等. 基于Transformer和CNN交错混合的肺结节分割网络[J]. 天津工业大学学报, 2024, 43(1): 74-81. WU J, HOU X Z, WANG J, et al. Interlace mixed net of lung nodule segmentation based on Transformer and CNN[J]. Journal of Tiangong University, 2024, 43(1): 74-81. [35] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [36] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. [37] FENG S, ZHAO H, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018. [38] JIANG H, SHI T, BAI Z, et al. AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes[J]. IEEE Access, 2019, 7: 24898-24909. [39] TANG T, LI F, JIANG M, et al. Improved complementary pulmonary nodule segmentation model based on multi-feature fusion[J]. Entropy, 2022, 24(12): 1755. [40] WANG X, YANG B, PAN X, et al. BPCN: bilateral progressive compensation network for lung infection image segmentation[J]. Physics in Medicine and Biology, 2023, 68(3): 035001. [41] LU F, ZHANG Z, LIU T, et al. A weakly supervised inpainting-based learning method for lung CT image segmentation[J]. Pattern Recognition, 2023, 144: 109861. [42] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [43] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[J]. arXiv:1804.03999, 2018. [44] SUN W C, FENG X, LIU J Y, et al. Weakly supervised segmentation of COVID-19 infection with local lesion coherence on CT images[J]. Biomedical Signal Processing and Control, 2023, 79: 104099. [45] CHEN Z, XU Q, CONG R, et al. Global context-aware progressive aggregation network for salient object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10599-10606. [46] OBUKHOV A, GEORGOULIS S, DAI D, et al. Gated CRF loss for weakly supervised semantic image segmentation[J]. arXiv:1906.04651, 2019. [47] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in Neural Information Processing Systems 30, 2017. [48] 李文聪. 半监督的道路可行区域检测算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. LI W C. Reseach on on semi supervised road drivable area detection algorithm[D]. Harbin: Harbin Institute of Technology, 2022. [49] CAI G W, LIU Y B, FENG Q J, et al. Semi-supervised segmentation of interstitial lung disease patterns from CT images via self-training with selective re-training[J]. Bioengineering, 2023, 10(7): 830. [50] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. [51] YANG L, ZHUO W, QI L, et al. ST++: make self-training Work better for semi-supervised semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4258-4267. [52] LU X, XU Y, YUAN W. DBF-Net: a semi-supervised dual-task balanced fusion network for segmenting infected regions from lung CT images[J]. Evolving Systems, 2023, 14(3): 519-532. [53] SHAN F, GAO Y, WANG J, et al. Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction[J]. Medical Physics, 2021, 48(4): 1633-1645. [54] LIU S, CAI T, TANG X, et al. MRL-net: multi-scale representation learning network for COVID-19 lung CT image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(9): 4317-4328. [55] FAN X, FENG X. SELDNet: sequenced encoder and lightweight decoder network for COVID-19 infection region segmentation[J]. Displays, 2023, 77: 102395. [56] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [57] 梁隆凯, 付鹤, 陈峰蔚, 等. 深度学习与医学图像处理[M]. 北京: 人民邮电出版社, 2023: 95-99. LIANG L K, FU H, CHEN F W, et al. Deep learning and medical image processing[M]. Beijing: Posts & Telecom Press, 2023: 95-99. [58] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11. [59] HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059. [61] QIAN L, WEN C, LI Y, et al. Multi-scale context UNet-like network with redesigned skip connections for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2024, 243: 107885. [62] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015. [63] SELVADASS S, BRUNTHA P M, SAGAYAM K M, et al. SAtUNet: series atrous convolution enhanced U-Net for lung nodule segmentation[J]. International Journal of Imaging Systems and Technology, 2024, 34(1): 22964. [64] WU Z, LI X, ZUO J. RAD-UNet: research on an improved lung nodule semantic segmentation algorithm based on deep learning[J]. Frontiers in Oncology, 2023, 13: 1084096. [65] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [66] ZHANG X, KONG S, HAN Y, et al. Lung nodule CT image segmentation model based on multiscale dense residual neural network[J]. Mathematics, 2023, 11(6): 1363. [67] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. [68] 卢小燕, 徐杨, 袁文昊. 用于肺部病灶图像分割的多尺度稠密融合网络[J]. 计算机应用, 2023, 43(10): 3282-3289. LU X Y, XU Y, YUAN W H. Multiscale dense fusion network for lung lesion image segmentation[J]. Journal of Computer Applications, 2023, 43(10): 3282-3289. [69] 林洁沁, 黄新. 多尺度特征融合注意力新冠肺炎病灶分割网络[J]. 激光杂志, 2024, 45(3): 168-174. LIN J Q, HUANG X. COVID-19 lesion segmentation network based on multi-scale feature fusion attention[J]. Laser Journal, 2024, 45(3): 168-174. [70] 万黎明, 张小乾, 刘知贵, 等. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报 (自然科学版), 2022, 40(3): 66-75. WAN L M, ZHANG X Q, LIU Z G, et al. CT image segmentation of UNet pulmonary nodules based on efficient channel attention[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(3): 66-75. [71] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. [72] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 1-11. [73] HOU J, YAN C, LI R, et al. Lung nodule segmentation algorithm with SMR-UNet[J]. IEEE Access, 2023, 11: 34319-34331. [74] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017. [75] CHEN Y, HOU X, YANG Y, et al. Segmentation of lung nodules based on a refined segmentation network[J]. Medical Physics, 2024, 51(4): 2759-2771. [76] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 2016 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. [77] YUE Y, KONG F, CHENG M, et al. KFS-net: key features sampling network for lung nodule segmentation[J]. Sensing and Imaging, 2023, 25(1): 3. [78] ISENSEE F, PETERSEN J, KLEIN A, et al. nnU-Net: self-adapting framework for U-Net-based medical image segmentation[J]. arXiv:1809.10486, 2018. [79] WANG C, XU R, XU S, et al. Accurate lung nodule segmentation with detailed representation transfer and soft mask supervision[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 18381-18393. [80] 马金林, 邓媛媛, 马自萍. 肝脏肿瘤CT图像深度学习分割方法综述[J]. 中国图象图形学报, 2020, 25(10): 2024-2046. MA J L, DENG Y Y, MA Z P. Review of deep learning segmentation methods for CT images of liver tumors[J]. Journal of Image and Graphics, 2020, 25(10): 2024-2046. [81] LEE B J, MARTIROSYAN S T, KHAN Z, et al. Attention-based automated chest CT image segmentation method of COVID-19 lung infection[C]//Proceedings of the 2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering. Piscataway: IEEE, 2022: 158-163. [82] ZHAO J, DANG M, CHEN Z, et al. DSU-Net: distraction-sensitive U-Net for 3D lung tumor segmentation[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104649. [83] BANU S F, SARKER M M K, ABDEL-NASSER M, et al. AWEU-Net: an attention-aware weight excitation U-Net for lung nodule segmentation[J]. Applied Sciences, 2021, 11(21): 10132. [84] PENG Y, ZHANG T, GUO Y. Cov-TransNet: dual branch fusion network with transformer for COVID-19 infection segmentation[J]. Biomedical Signal Processing and Control, 2023, 80: 104366. [85] 程照雪, 李阳, 周妍, 等. 增强边缘特征的肺结节分割模型[J]. 计算机工程与应用, 2023, 59(24): 185-195. CHENG Z X, LI Y, ZHOU Y, et al. Lung nodule segmentation model with enhanced edge features[J]. Computer Engineering and Applications, 2023, 59(24): 185-195. [86] LUAN S Z, CHEN C, ZHANG B C, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357-4366. [87] ?I?EK ?, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 424-432. [88] WU Z, ZHOU Q, WANG F. Coarse-to-fine lung nodule segmentation in CT images with image enhancement and dual-branch network[J]. IEEE Access, 2021, 9: 7255-7262. [89] WANG T, WU F, LU H, et al. CA-UNet: convolution and attention fusion for lung nodule segmentation[J]. International Journal of Imaging Systems and Technology, 2023, 33(5): 1469-1479. [90] SAHA S, DUTTA S, GOSWAMI B, et al. ADU-Net: an attention dense U-Net based deep supervised DNN for automated lesion segmentation of COVID-19 from chest CT images[J]. Biomedical Signal Processing and Control, 2023, 85: 104974. [91] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680. [92] LUC P, COUPRIE C, CHINTALA S, et al. Semantic segmentation using adversarial networks[J]. arXiv:1611.08408, 2016. [93] 郜一玮. 基于生成对抗网络的多模态图像融合模型研究[D]. 淮南: 安徽理工大学, 2022. GAO Y W. Research on multi-modality image fusion model based on generative adversarial network[D]. Huainan: Anhui University of Science and Technology, 2022. [94] 张宜劼. 连续时间Dynkin博弈的纳什均衡点存在性的一个新证明[J]. 宁夏大学学报 (自然科学版), 2019, 40(3): 197-203. ZHANG Y J. A new method on the existence of the Nash equilibrium for continuous time stochastic games with stopping times[J]. Journal of Ningxia University (Natural Science Edition), 2019, 40(3): 197-203. [95] TYAGI S, TALBAR S N. CSE-GAN: a 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation[J]. Computers in Biology and Medicine, 2022, 147: 105781. [96] ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel “squeeze & excitation” in fully convolutional networks[C]//Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2018: 421-429. [97] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. [98] 赵俊强, 李骥, 王昌, 等. DA-GAN肺结节分割网络研究[J]. 中国测试, 2022, 48(9): 118-124. ZHAO J Q, LI J, WANG C, et al. Research of DA-GAN pulmonary nodule segmentation[J]. China Measurement & Test, 2022, 48(9): 118-124. [99] 张秀峰, 李永鑫, 王苇, 等. 生成对抗网络磨玻璃样肺结节分割方法[J]. 无线电工程, 2023, 53(1): 161-167. ZHANG X F, LI Y X, WANG W, et al. A generative adversarial network for ground glass pulmonary nodule segmentation[J]. Radio Engineering, 2023, 53(1): 161-167. [100] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807. [101] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. [102] CONNELL M, XIN Y, GERARD S E, et al. Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN[J]. Methods, 2022, 205: 200-209. [103] SHI Z, HU Q, YUE Y, et al. Automatic nodule segmentation method for CT images using aggregation-U-net generative adversarial networks[J]. Sensing and Imaging, 2020, 21(1): 39. [104] JAIN S, INDORA S, ATAL D K. Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network[J]. Computers in Biology and Medicine, 2021, 137: 104811. [105] SHERWANI M K, MARZULLO A, DE MOMI E, et al. Lesion segmentation in lung CT scans using unsupervised adversarial learning[J]. Medical & Biological Engineering & Computing, 2022, 60(11): 3203-3215. [106] 王国凯, 张翔, 王顺芳. 多尺度和边界融合的皮肤病变区域分割网络[J]. 计算机科学与探索, 2024, 18(7): 1826-1837. WANG G K, ZHANG X, WANG S F. Multi-scale and boundary fusion network for skin lesion regions segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1826-1837. [107] ZHAO Z A, FENG X F, REN X Q, et al. Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation[J]. Physics in Medicine & Biology, 2023, 68(24): 245010. [108] 孙兴, 蔡肖红, 李明, 等. 视觉大模型SAM在医学图像分割中的应用综述[J]. 计算机工程与应用, 2024, 60(17): 1-16. SUN X, CAI X H, LI M, et al. Review of application of visual foundation model SAM in medical image segmentation[J]. Computer Engineering and Applications, 2024, 60(17): 1-16. [109] MAZUROWSKI M A, DONG H, GU H, et al. Segment anything model for medical image analysis: an experimental study[J]. Medical Image Analysis, 2023, 89: 102918. [110] GU J, YOU K, CHO H C, et al. CheX-GPT: harnessing large language models for enhanced chest X-ray report labeling[J]. arXiv:2401.11505, 2024. [111] 包强强, 唐思源, 谷宇. 深度学习检测肺结节难点问题综述[J]. 计算机工程与应用, 2024, 60(19): 18-31. BAO Q Q, TANG S Y, GU Y. Review of difficult problems of deep learning to detect lung nodules[J]. Computer Engineering and Applications, 2024, 60(19): 18-31. [112] 蒲秋梅, 殷帅, 李正茂, 等. U型卷积网络在乳腺医学图像分割中的研究综述[J]. 计算机科学与探索, 2024, 18(6): 1383-1403. PU Q M, YIN S, LI Z M, et al. Review of U-net-based convolutional neural networks for breast medical image segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
[1] | HONG Shuying, ZHANG Donglin. Survey on Lane Line Detection Techniques for Classifying Semantic Information Processing Modalities [J]. Computer Engineering and Applications, 2025, 61(5): 1-17. |
[2] | ZHANG Jianwei, CHEN Xu, WANG Shuyang, JING Yongjun, SONG Jifei. Review of Application of Spatiotemporal Graph Neural Networks in Internet of Things [J]. Computer Engineering and Applications, 2025, 61(5): 43-54. |
[3] | ZHANG Hongmin, ZHENG Jingtian, YAN Dingding, TIAN Qianqian. Improved Detection Method for Human Abnormal Behavior in Generative Adversarial Networks [J]. Computer Engineering and Applications, 2025, 61(5): 147-154. |
[4] | YU Chengxu, ZHANG Yulai. Research on Deep Learning Backdoor Defense Based on Fine-Tuning [J]. Computer Engineering and Applications, 2025, 61(5): 155-164. |
[5] | LIANG Chengwu , HU Wei, YANG Jie, JIANG Songqi, HOU Ning. Fusion of Spatio-Temporal Domain Knowledge and Data-Driven for Skeleton-Based Action Recognition [J]. Computer Engineering and Applications, 2025, 61(5): 165-176. |
[6] | LI Xin, ZHANG Dan, GUO Xin, WANG Song, CHEN Enqing. Human Pose Estimation Based on Dual-Stream Fusion of CNN and Transformer [J]. Computer Engineering and Applications, 2025, 61(5): 187-199. |
[7] | DONG Jiadong, GUO Qinghu, CHEN Lin, SANG Feihu. Review on Optimization Algorithms for One-Stage Metal Surface Defect Detection in Deep Learning [J]. Computer Engineering and Applications, 2025, 61(4): 72-89. |
[8] | LEI Jingsheng, ZHANG Zhihao, QIAN Xiaohong, WANG Weiran, YANG Shengying. Improved Lightweight Multi-Directional License Plate Detection Algorithm of YOLOX [J]. Computer Engineering and Applications, 2025, 61(4): 230-240. |
[9] | YUAN Heng, YAN Tinghao, ZHANG Shengchong. Two-Stage Feature Transfer Image Dehazing Algorithm [J]. Computer Engineering and Applications, 2025, 61(4): 241-252. |
[10] | ZHANG Kai, JIA Tao. RCNN Method of Transmission Tower Component Detection Based on Knowledge Graph and Small Object Improvement [J]. Computer Engineering and Applications, 2025, 61(4): 299-309. |
[11] | JIANG Yuehan, CHEN Junjie, LI Hongjun. Review of Human Action Recognition Based on Skeletal Graph Neural Networks [J]. Computer Engineering and Applications, 2025, 61(3): 34-47. |
[12] | LI Zehui, ZHANG Lin, SHAN Xianying. Review on Improvement and Application of 3D Convolutional Neural Networks [J]. Computer Engineering and Applications, 2025, 61(3): 48-61. |
[13] | YU Yunhu, YANG Xiang, CHEN Yanhong. Lead Context Encoding Embedded GCN for Arrhythmia Classification [J]. Computer Engineering and Applications, 2025, 61(3): 212-222. |
[14] | LI Zhiyuan, LIU Yi, ZHANG Pengcheng, ZHANG Liyuan, REN Shilei, LU Jing, GUI Zhiguo. Adaptive Weighted Total Variational and Gaussian Attention-Guided LDCT Image Denoising Networks [J]. Computer Engineering and Applications, 2025, 61(3): 253-263. |
[15] | FENG Xingyu, ZHU Linglong, ZHANG Yonghong, KAN Xi, CAO Haixiao, MA Guangyi. Change Detection Algorithm Based on Multilateral Feature Guided Aggregation Network [J]. Computer Engineering and Applications, 2025, 61(3): 264-274. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||