[1] FAN Y X, WEN G J, LI D R, et al. Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder[J]. Computer Vision and Image Understanding, 2020, 195(11): 102920.
[2] SHAMA F, MECHREZ R, SHOSHAN A, et al. Adversarial feedback loop[C]//Proceedings of the International Conference on Computer Vision, 2019: 3205-3214.
[3] GONG D, LIU L Q, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the International Conference on Computer Vision, 2019: 1705-1714.
[4] KUMAR A, RAWAT Y S. End-to-end semi-supervised learning for video action detection[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition, 2022: 14680-14690.
[5] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceecings of the 28th International Conference on Neural Information Processing Systems, 2014: 2672-2680.
[6] SABOKROU M, KHALOOEI M, FATHY M, et al. Adversarially learned one-class classifier for novelty detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 3379-3388.
[7] RAVANBAKHSH M, SANGINETO E, NABI M, et al. Training adversarial discriminators for cross-channel abnormal event detection in crowds[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, 2019: 1896-1904.
[8] REN J, XIA F, LIU Y M, et al. Deep video anomaly detection: opportunities and challenges[C]//Proceedings of the International Conference on Data Mining Workshops, 2021: 959-966.
[9] LIU W, LUO W, LIAN D, et al. Future frame prediction for anomaly detection—a new baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6536-6545.
[10] HASAN M, CHOI J, NEUMANN J, et al. Learning temporal regularity in video sequences[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 733-742.
[11] CHONG Y S, TAY Y H. Abnormal event detection in videos using spatiotemporal autoencoder[C]//Proceedings of the International Symposium on Neural Networks, 2017: 189-196.
[12] DEEPAK K, CHANDRAKALA S, MOHAN C K. Residual spatio temporal autoencoder for unsupervised video anomaly detection[J]. Image and Video Processing, 2021, 15: 215-222.
[13] IONESCU R T, KHAN F S, GEORGESCU M I, et al. Object-centric auto-encoders and dummy anomalies for abnormal event detection in video[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 7842-7851.
[14] RAVANBAKHSH M, NABI M, MOUSAVI H, et al. Plug-and-play CNN for crowd motion analysis: an application in abnormal event detection[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, 2018: 1689-1698.
[15] NGUYEN N T, MEUNIER J. Anomaly detection in video sequence with appearance-motion correspondence[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 1273-1283.
[16] YU G, WANG S Q, CAI Z P, et al. Cloze test helps: effective video anomaly detection via learning to complete video events[C]//Proceedings of the 28th ACM International Conference on Multimedia, 2020: 583-591.
[17] MATHIEU M, COUPRIE C, LECUN Y. Deep multiscale video prediction beyond mean square error[J]. arXiv:1511.
05440, 2015.
[18] LEE S, KIM H G, RO Y M, et al. BMAN: bidirectional multi-scale aggregation networks for abnormal event detection[J]. IEEE Transactions on Image Processing, 2019, 29: 2395-2408.
[19] CHEN D Y, WANG P T, YUE L Y, et al. Anomaly detection in surveillance video based on bidirectional prediction[J]. Image and Vision Computing, 2020, 98: 103915.
[20] MAHADEVAN V, LI W X, BHALODIA V, et al. Anomaly detection in crowded scenes[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 1975-1981.
[21] LU C, SHI J, JIA J. Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of the 2014 IEEE International Conference on Computer Vision, 2014: 2720-2727.
[22] LUO W, WEN L, GAO S. A revisit of sparse coding based anomaly detection in stacked RNN framework[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 341-349.
[23] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[C]//Proceedings of the NIPS 2017 Workshop Autodiff Decision Program Chairs, 2017.
[24] KINGMA D, BA J. Adam: a method for stochastic optimization[J]. arXiv.1412.6980, 2014.
[25] LUO W X, LIU W, GAO S H. Remembering history with convolutional LSTM for anomaly detection[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo, 2017: 439-444.
[26] DOSHI K, YILMAZ Y. Any-shot sequential anomaly detection in surveillance videos[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 934-935.
[27] LU Y W, YU F, KUMAR M, et al. Few-shot scene-adaptive anomaly detection[J]. arXiv:2007.07843, 2020.
[28] JI X L, LI B R, ZHU Y S. TAM-Net: temporal enhanced appearance-to-motion generative network for video anomaly detection[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, 2020: 1-8.
[29] ASTRID M, ZAHEER M Z, LEE J Y, et al. Learning not to reconstruct anomalies[J]. arXiv: 2110. 09742, 2021.
[30] LIU Z A, NIE Y W, LONG C J, et al. A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction[C]//Proceedings of the IEEE International Conference on Computer Vision, 2021: 13588-13597.
[31] WANG G D, WANG Y H, QIN J, et al. Video anomaly detection by solving decoupled spatio-temporal jigsaw puzzles[J]. arXiv:2207.101722, 2022.
[32] REISS T, HOSHEN Y. Attribute-based representations for accurate and interpretable video anomaly detection[J]. arXiv:2212.00789, 2022. |