GAO Wenchao, REN Shengbo, TIAN Chi, ZHAO Shanshan. Research on Method of Animated Avatar Generation Based on Multi-Level Generative Adversarial Networks[J]. Computer Engineering and Applications, 2022, 58(9): 230-237.
[1] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Conference on Neural Information Processing Systems.[S.l.]:MIT Press,2014:2672-2680.
[2] 叶晨,关玮.生成式对抗网络的应用综述[J].同济大学学报(自然科学版),2020,48(4):591-601.
YE C,GUAN W.A review of application of generative adversarial networks[J].Journal of Tongji University(Natural Science),2020,48(4):591-601.
[3] 刘玉杰,窦长红,赵其鲁.基于条件生成对抗网络的手绘图像检索[J].计算机辅助设计与图形学学报,2017,29(12):2336-2342.
LIU Y J,DOU C H,ZHAO Q L.Sketch based image retrieval with conditional generative adversarial network[J].Journal of Computer-Aided Design & Computer Graphics,2017,29(12):2336-2342.
[4] 吴春梅,胡军浩,尹江华.利用改进生成对抗网络进行人体姿态识别.[J].计算机工程与应用,2020,56(8):96-103.
WU C M,HU J H,YIN J H.Using improved generative adversarial network for human pose estimation[J].Computer Engineering and Applications,2020,56(8):96-103.
[5] 吴少乾,李西明.生成对抗网络的研究进展综述[J].计算机科学与探索,2020,14(3):377-388.
WU S Q,LI X M.Survey on research progress of generating adversarial networks[J].Journal of Frontiers of Computer Science and Technology,2020,14(3):377-388.
[6] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014.
[7] ODENA A,OLAH C,SHLENS J.Conditional image synthesis with auxiliary classifier gans[C]//International Conference on Machine Learning,2017:4043-4055.
[8] RADFORD A,METZ L,CHINTALA S.Unsupervised representation learning with deep convolutional generative adversarial networks[C]//International Conference on Learning Representations,2016.
[9] METZ L,POOLE B,PFAU D,et al.Unrolled generative adversarial networks[C]//International Conference on Learning Representations(ICLR),Toulon,2017.
[10] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//International Conference on Machine Learning,2017:298-321.
[11] KARRAS T,AILA T,LAINE S,et al.Progressive growing of GANs for improved quality,stability,and variation[C]//International Conference on Learning Representations,2018.
[12] KARNEWAR A,WANG O.MSG-GAN:multi-scale gradients for generative adversarial networks[C]//2020 IEEE CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020.
[13] ZHANG H,XU T,LI H S,et al.StackGAN++:realistic image synthesis with stacked generative adversarial networks[J].arXiv:1710.10916,2017.
[14] SALIMANS T,GOODFELLOW I,ZAREMBA W,et al.Improved techniques for training GANs[C]//Advances in Neural Information Processing Systems,2016:2234-2242.
[15] ZHANG H,XU T,LI H,et al.StackGAN:text to photo-realistic image synthesis with stacked generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:5907-5915.
[16] DAUPHIN Y N,FAN A,AULI M,et al.Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning,2017:933-941.
[17] NAH S,KIM T H,LEE K M.Deep multi-scale convolutional neural network for dynamic scene deblurring[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017.
[18] LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2017.
[19] 李诚,张羽,黄初华.改进的生成对抗网络图像超分辨率重建[J].计算机工程与应用,2020,56(4):191-196.
LI C,ZHANG Y,HUANG C H.Improved super-resolution reconstruction of image based on generative adversarial networks[J].Computer Engineering and Applications,2020,56(4):191-196.
[20] JOHNSON J,ALAHI A,LI F F.Perceptual losses for real-time style transfer and super-resolution[C]//European Conference on Computer Vision(ECCV),2016.
[21] MAO X,LI Q,XIE H,et al.Least squares generative adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2794-2802.
[22] HEUSEL M,RAMSAUER H,UNTERTHINER T,et al.GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Conference on Neural Information Processing Systems.[S.l.]:MIT Press,2017:6627-6638.
[23] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition,2016.