[1] LAI C C,SHIH T P,KO W C,et al.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19):the epidemic and the challenges[J].International Journal of Antimicrobial Agents,2020,55(3):529-538.
[2] XU X,JIANG X,MA C,et al.Deep learning system to screen coronavirus disease 2019 pneumonia[J].Engineering,2020,6(10):1122-1129.
[3] GOZES O,FRID-ADAR M,GREENSPAN H,et al.Rapid AI development cycle for the coronavirus(COVID-19) pandemic:initial results for automated detection & patient monitoring using deep learning CT image analysis[J].Neural Computing and Applications,2020,18(6):2-11.
[4] FANG Y,ZHANG H,XIE J,et al.Sensitivity of chest CT for COVID-19:comparison to RT-PCR[J].Radiology,2020,14(7):618-629.
[5] 林成创,单纯,赵淦森,等.机器视觉应用中的图像数据增广综述[J].计算机科学与探索,2021,15(4):583-611.
LIN C C,SHAN C,ZHAO G S,et al.Review of image data augmentation in computer vision[J].Journal of Frontiers of Computer Science and Technology,2021,15(4):583-611.
[6] RAJARAMAN S,ANTANI S.Weakly labeled data augmentation for deep learning:a study on COVID-19 detection in chest X-Rays[J].Diagnostics,2020,10(6):358-364.
[7] GANESAN P,RAJARAMAN S,LONG R,et al.Assessment of data augmentation strategies toward performance improvement of abnormality classification in chest radiographs[C]//2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society,2019:841-844.
[8] LOEY M,SMARANDACHE F,KHALIFA N E M.Within the lack of chest COVID-19 X-ray dataset:a novel detection model based on GAN and deep transfer learning[J].Symmetry,2020,12(4):651-653.
[9] 王坤,张学良,张岁霞,等.基于机器学习方法的肝癌X射线相衬CT图像分类研究[J].中国生物医学工程学报,2020(5):112-116.
WANG K,ZHANG X L,ZHANG S X,et al.Classification of X-Ray phase-contrast CT images in liver cancer based on machine learning[J].Chinese Journal of Biomedical Engineering,2020(5):112-116.
[10] NARDELLI P,JIMENEZ-CARRETERO D,BERMEJO-PELAEZ D,et al.Pulmonary artery-vein classification in CT images using deep learning[J].IEEE Transactions on Medical Imaging,2018,37(11):2428-2440.
[11] PANNU H S,SINGH D,MALHI A K.Improved particle swarm optimization based adaptive neuro fuzzy inference system for benzene detection[J].CLEAN-Soil,Air,Water,2018,46(5):1700-1712.
[12] PANNU H S,SINGH D,MALHI A K.Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring[J].Neural Computing and Applications,2019,15(6):1-11.
[13] HEMDAN E E D,SHOUMAN M A,KARAR M E.COVIDX-Net:a framework of deep learning classifiers to diagnose COVID-19 in X-ray images[J].Symmetry,2020,2(5):435-442.
[14] SETHY P K,BEHERA S K.Detection of coronavirus disease (COVID-19) based on deep features and support vector machine[J].International Journal of Mathematical,Engineering and Management Sciences,2020,20(4):643-651.
[15] NARIN A,KAYA C,PAMUK Z.Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks[J].Diagnostics,2020,8(4):255-262.
[16] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Advances In Neural Information Processing Systems,2014:2672-2680.
[17] FRID-ADAR M,KLANG E,AMITAI M,et al.Synthetic data augmentation using GAN for improved liver lesion classification[C]//2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018),2018.
[18] GURUMURTHY S,SARVADEVABHATLA R K,VENKATESH BABU R.DeLiGAN:generative adversarial networks for diverse and limited data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:166-174.
[19] SHIN H C,TENENHOLTZ N A,ROGERS J K,et al.Medical image synthesis for data augmentation and anonymization using generative adversarial networks[C]//International Workshop on Simulation and Synthesis in Medical Imaging.Cham:Springer,2018:1-11.
[20] 贡荣麟,施俊,王骏.面向乳腺超声图像分割的混合监督双通道反馈U-Net[J].中国图象图形学报,2020,25(10):2206-2217.
GONG R L,SHI J,WANG J.Hybrid supervised dual-channel feedback U-Net for segmentation of breast ultrasound images[J].Journal of Images and Graphics,2020,25(10):2206-2217.
[21] 纪玲玉,高永彬,蔡清萍,等.基于改进卷积神经网络的腹部动脉血管分割[J].计算机工程与科学,2021,43(11):1986-1993.
JI L Y,GAO Y B,CAI Q P,et al.Abdominal artery segmentation based on improved convolutional neural network[J].Computer Engineering and Science,2021,43(11):1986-1993.
[22] 邢妍妍,杨丰,唐宇姣,等.融合型UNet++网络的超声胎儿头部边缘检测[J].中国图象图形学报,2020,25(2):366-377.
XING Y Y,YANG F,TANG Y J,et al.Ultrasound fetal head edge detection using fusion UNet++[J].Journal of Images and Graphics,2020,25(2):366-377.
[23] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2016:770-778.
[24] HUANG X,BELONGIE S.Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:1501-1510.
[25] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceeding of the 32nd International Conference on Machine Learning,2015:448-456.
[26] ABADI M.TensorFlow:learning functions at scale[J].ACM SIGPLAN Notices,2016,2(1):12-14.
[27] RAYNER A.Keras[J].School Librarian,2013,24(8):259-261.
[28] OUYANG X,HUO J,XIA L,et al.Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia[J].IEEE Transactions on Medical Imaging,2020,39(8):2595-2605.
[29] SUN L,MO Z,YAN F,et al.Adaptive feature selection guided deep forest for COVID-19 classification with chest CT[J].IEEE Journal of Biomedical and Health Informatics,2020,24(10):2798-2805.
[30] TO A,MT B,EAY C,et al.Automated detection of COVID-19 cases using deep neural networks with X-ray images[J].Computers in Biology and Medicine,2020,34(7):121-129.
[31] WANG L,LIN Z Q,WONG A.COVID-Net:a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images[J].Scientific Reports,2020,10(1):439-443.
[32] BARSTUGAN M,OZKAYA U,OZTURK S.Coronavirus(COVID-19) classification using CT images by machine learning methods[J].Radiology,2020,13(3):41-48.
[33] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[J].International Journal of Computer Vision,2020,128(2):336-359.
ZHENG Fengxian, WANG Xiali, HE Dandan, LI Nini, FU Yangyang, YUAN Shaoxin.
Survey of Single Image Defogging Algorithm
[J]. Computer Engineering and Applications, 2022, 58(3): 1-14.