Computer Engineering and Applications ›› 2022, Vol. 58 ›› Issue (2): 1-14.DOI: 10.3778/j.issn.1002-8331.2104-0408
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Huan, LIU Jing, FENG Yibo, QIU Dawei
Online:
2022-01-15
Published:
2022-01-18
张欢,刘静,冯毅博,仇大伟
ZHANG Huan, LIU Jing, FENG Yibo, QIU Dawei. Review of U-Net and Its Application in Segmentation of Liver and Liver Tumors[J]. Computer Engineering and Applications, 2022, 58(2): 1-14.
张欢, 刘静, 冯毅博, 仇大伟. U-Net及其在肝脏和肝脏肿瘤分割中的应用综述[J]. 计算机工程与应用, 2022, 58(2): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2104-0408
[1] AUFFRAY C,BALLING R,BARROSO I,et al.Making sense of big data in health research:towards an EU action plan[J].Genome Medicine,2016,8(1):1-13. [2] AUSTIN C,KUSUMOTO F.The application of big data in medicine:current implications and future directions[J].Journal of Interventional Cardiac Electrophysiology,2016,47(1):51-59. [3] 施俊,汪琳琳,王珊珊,等.深度学习在医学影像中的应用综述[J].中国图象图形学报,2020,25(10):1953-1981. SHI J,WANG L L,WANG S S,et al.Applications of deep learning in medical imaging:a survey[J].Journal of Image and Graphics,2020,25(10):1953-1981. [4] 杨培伟,周余红,邢岗,等.卷积神经网络在生物医学图像上的应用进展[J].计算机工程与应用,2021,57(7):44-58. YANG P W,ZHOU Y H,XING G,et al.Applications of convolutional neural network in biomedical image[J].Computer Engineering and Applications,2021,57(7):44-58. [5] RONNEBERGER O,FISCHER P,BROX T.U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Berlin:Springer,2015:234-241. [6] BOSCH F X,RIBES J,DíAZ M,et al.Primary liver cancer:worldwide incidence and trends[J].Gastroenterology,2004,127(5):5-16. [7] BILIC P,CHRIST P F,VORONTSOV E,et al.The liver tumor segmentation benchmark(lits)[J].arXiv:1901.04056,2019. [8] 乐美琰,魏千越,邓炜,等.基于电子计算机断层扫描图像的肝癌病灶自动分割方法研究进展[J].生物医学工程学杂志,2018,35(3):481-487. YUE M Y,WEI Q Y,DENG W,et al.A review of automatic liver tumor segmentation based on computed tomography[J].Journal of Biomedical Engineering,2018,35(3):481-487. [9] 马金林,邓媛媛,马自萍.肝脏肿瘤CT图像深度学习分割方法综述[J].中国图象图形学报,2020,25(10):2024-2046. MA J L,DENG Y Y,MA Z P.Review of deep learning segmentation methods for CT images of liver tumors[J].Journal of Image and Graphics,2020,25(10):2024-2046. [10] 郭雯,鞠忠建,吴青南,等.基于深度学习的器官自动分割研究进展[J].医疗卫生装备,2020,41(1):85-94. GUO W,JU Z J,WU Q N,et al.Research progress of automatic organ image segmentation based on deep learning[J].Chinese Medical Equipment Journal,2020,41(1):85-94. [11] XU P,CHEN C,WANG X,et al.ROI-based intraoperative MR-CT registration for image-guided multimode tumor ablation therapy in hepatic malignant tumors[J].IEEE Access,2020,8:13613-13619. [12] SCHLEMPER J,OKTAY O,SCHAAP M,et al.Attention gated networks:learning to leverage salient regions in medical images[J].Medical Image Analysis,2019,53:197-207. [13] HEIMANN T,VAN GINNEKEN B,STYNER M A,et al.Comparison and evaluation of methods for liver segmentation from CT datasets[J].IEEE Transactions on Medical Imaging,2009,28(8):1251-1265. [14] LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651. [15] MILLETARI F,NAVAB N,AHMADI S A.V-net:fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision(3DV).Piscataway,NJ:IEEE,2016:565-571. [16] IBTEHAZ N,RAHMAN M S.MultiResUNet:rethinking the U-Net architecture for multimodal biomedical image segmentation[J].Neural Networks,2020,121:74-87. [17] ZHANG J,JIN Y,XU J,et al.MDU-Net:multi-scale densely connected U-Net for biomedical image segmentation[J].arXiv:1812.00352,2018. [18] GUAN S,KHAN A A,SIKDAR S,et al.Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J].IEEE Journal of Biomedical and Health Informatics,2019,24(2):568-576. [19] DOLZ J,AYED I B,DESROSIERS C.Dense multi-path U-Net for ischemic stroke lesion segmentation in multiple image modalities[C]//International MICCAI Brainlesion Workshop.Berlin:Springer,2018:271-282. [20] OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-Net:learning where to look for the pancreas[J].arXiv:1804.03999,2018. [21] LI C,TAN Y,CHEN W,et al.ANU-Net:attention-based nested U-net to exploit full resolution features for medical image segmentation[J].Computers & Graphics,2020,90:11-20. [22] 彭璟,罗浩宇,赵淦森,等.深度学习下的医学影像分割算法综述[J].计算机工程与应用,2021,57(3):44-57. PENG J,LUO H Y,ZHAO G S,et al.Survey of medical image segmentation algorithm in deep learning[J].Computer Engineering and Applications,2021,57(3):44-57. [23] SONG L,TSO G K F,HE K J.Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation[J].Expert Systems with Applications,2020,145:113131. [24] ZHANG Z,WU C D,COLEMAN S,et al.DENSE-Inception U-net for medical image segmentation[J].Computer Methods and Programs in Biomedicine,2020,192:105395. [25] JIN Q,MENG Z,PHAM T D,et al.DUNet:a deformable network for retinal vessel segmentation[J].Knowledge-Based Systems,2019,178:149-162. [26] CHEN C,LIU X,DING M,et al.3D dilated multi-fiber network for real-time brain tumor segmentation in MRI[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin:Springer,2019:184-192. [27] ALOM M Z,YAKOPCIC C,HASAN M,et al.Recurrent residual U-Net for medical image segmentation[J].Journal of Medical Imaging,2019,6(1):014006. [28] WANG W,CHEN J,ZHAO J,et al.Automated segmentation of pulmonary lobes using coordination-guided deep neural networks[C]//2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019).Piscataway,NJ:IEEE,2019:1353-1357. [29] CHEN W,ZHANG Y,HE J,et al.Prostate segmentation using 2d bridged U-net[C]//2019 International Joint Conference on Neural Networks(IJCNN).Piscataway,NJ:IEEE,2019:1-7. [30] ZHUANG J.Laddernet:multi-path networks based on U-net for medical image segmentation[J].arXiv:1810.07810,2018. [31] ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:a nested U-Net architecture for medical image segmentation[M]//Deep learning in medical image analysis and multimodal learning for clinical decision support.Berlin:Springer,2018:3-11. [32] HUANG H,LIN L,TONG R,et al.Unet 3+:a full-scale connected unet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Piscataway,NJ:IEEE,2020:1055-1059. [33] FU J,LIU J,TIAN H,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3146-3154. [34] 谷鹏辉,肖志勇.改进的U-Net在视网膜血管分割上的应用[J/OL].计算机科学与探索:1-12[2021-07-20].http://kns.cnki.net/kcms/detail/11.5602.TP.20210128.1041.008.html. GU P H,XIAO Z Y.Application of improved U-Net in retinal vessel segmentation[J/OL].Journal of Frontiers of Computer Science and Technology:1-12[2021-07-20].http://kns.cnki.net/kcms/detail/11.5602.TP.20210128.1041. 008.html. [35] JHA D,RIEGLER M A,JOHANSEN D,et al.Doubleu-net:a deep convolutional neural network for medical image segmentation[C]//2020 IEEE 33rd International Symposium on Computer-Based Medical Systems(CBMS).Piscataway,NJ:IEEE,2020:558-564. [36] VALLOLI V K,MEHTA K.W-net:reinforced U-net for density map estimation[J].arXiv:1903.11249,2019. [37] FU H,CHENG J,XU Y,et al.Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J].IEEE Transactions on Medical Imaging,2018,37(7):1597-1605. [38] ?I?EK ?,ABDULKADIR A,LIENKAMP S S,et al.3D U-Net:learning dense volumetric segmentation from sparse annotation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Berlin:Springer,2016:424-432. [39] 孙明建,徐军,马伟,等.基于新型深度全卷积网络的肝脏CT影像三维区域自动分割[J].中国生物医学工程学报,2018,37(4):385-393. SUN M J,XU J,MA W,et al.A new fully convolutional network for 3D liver region segmentation on CT images[J].Chinese Journal of Biomedical Engineering,2018,37(4):385-393. [40] XING Y,WANG J,CHEN X,et al.2.5 D convolution for RGB-D semantic segmentation[C]//2019 IEEE International Conference on Image Processing(ICIP).Piscataway,NJ:IEEE,2019:1410-1414. [41] HAN X.Automatic liver lesion segmentation using a deep convolutional neural network method[J].arXiv:1704.07239,2017. [42] HAN L,CHEN Y,LI J,et al.Liver segmentation with 2.5 D perpendicular UNets[J].Computers & Electrical Engineering,2021,91:107118. [43] JIN Q,MENG Z,SUN C,et al.RA-UNet:a hybrid deep attention-aware network to extract liver and tumor in CT scans[J].Frontiers in Bioengineering and Biotechnology,2020,8:1471. [44] LEI T,ZHOU W,ZHANG Y,et al.Lightweight V-Net for liver segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Piscataway,NJ:IEEE,2020:1379-1383. [45] 李华,杨嘉能,刘凤,等.基于深度学习的乳腺癌病理图像分类研究综述[J].计算机工程与应用,2020,56(13):1-11. LI H,YANG J N,LIU F,et al.Survey of breast cancer histopathology image classification based on deep learning[J].Computer Engineering and Applications,2020,56(13):1-11. [46] CHRIST P F,ELSHAER M E A,ETTLINGER F,et al.Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin:Springer,2016:415-423. [47] VORONTSOV E,TANG A,PAL C,et al.Liver lesion segmentation informed by joint liver segmentation[C]//2018 IEEE 15th International Symposium on Biomedical Imaging(ISBI 2018).Piscataway,NJ:IEEE,2018:1332-1335. [48] ISENSEE F,PETERSEN J,KOHL S A A,et al.nnU-Net:breaking the spell on successful medical image segmentation[J].arXiv:1904.08128,2019. [49] 刘云鹏,刘光品,王仁芳,等.深度学习结合影像组学的肝脏肿瘤CT分割[J].中国图象图形学报,2020,25(10):2128-2141. LIU Y P,LIU G P,WANG R F,et al.Accurate segmentation method of liver tumor CT based on the combination of deep learning and radiomics[J].Journal of Image and Graphics,2020,25(10):2128-2141. [50] XU C,HU D,ZHANG Y D,et al.Study on the segmentation method of multi-phase CT liver tumor based on dual channel U-Nets[J].Journal of Physics:Conference Series,2021,1828(1):012043. [51] 黄泳嘉,史再峰,王仲琦,等.基于混合损失函数的改进型U-Net肝部医学影像分割方法[J].激光与光电子学进展,2020,57(22):66-75. HUANG Y J,SHI Z F,WANG Z Q,et al.Improved U-Net based on mixed loss function for liver medical image segmentation[J].Laser & Optoelectronics Progress,2020,57(22):66-75. [52] LI X,CHEN H,QI X,et al.H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J].IEEE Transactions on Medical Imaging,2018,37(12):2663-2674. [53] ZHANG Y,JIANG B,WU J,et al.Deep learning initialized and gradient enhanced level-set based segmentation for liver tumor from CT images[J].IEEE Access,2020,8:76056-76068. [54] 田宝园,程怿,蔡叶华,等.基于改进U-Net深度网络的超声正中神经图像分割[J].自动化仪表,2020,41(8):36-41. TIAN B Y,CHENG Y,CAI Y H,et al.Ultrasound image segmentation for median nerves based on improved U-Net deep network[J].Process Automation Instrumentation,2020,41(8):36-41. [55] SHORTEN C,KHOSHGOFTAAR T M.A survey on image data augmentation for deep learning[J].Journal of Big Data,2019,6(1):1-48. [56] 牟海维,郭颖,全星慧,等.一种基于改进U-Net脑肿瘤MRI图像分割方法[J/OL].激光与光电子学进展:1-13[2021-07-27].http://kns.cnki.net/kcms/detail/31.1690.TN.20200910. 0915.008.html. MOU H W,GUO Y,QUAN X H,et al.A brain tumor MRI image segmentation method based on improved U-Net[J/OL].Laser & Optoelectronics Progress:1-13[2021-07-27].http://kns.cnki.net/kcms/detail/31.1690.TN.20200910.0915. 008.html. |
[1] | ZHENG Fengxian, WANG Xiali, HE Dandan, LI Nini, FU Yangyang, YUAN Shaoxin. Survey of Single Image Defogging Algorithm [J]. Computer Engineering and Applications, 2022, 58(3): 1-14. |
[2] | SHE Xiangyang, LI Ruixin, YE Ou. Pedestrian Re-identification Combining Random Erasing and Residual Attention Network [J]. Computer Engineering and Applications, 2022, 58(3): 215-221. |
[3] | JU Sibo, XU Jing, LI Yanfang. Text-to-Single Image Method Based on Self-Attention [J]. Computer Engineering and Applications, 2022, 58(3): 249-258. |
[4] | XIAO Xue, LI Chengcheng. Research Progress on Evaluation Methods of Handwritten Chinese Characters [J]. Computer Engineering and Applications, 2022, 58(2): 27-42. |
[5] | ZHANG Binhui, SONG Chunhua, NIU Baoning, LIU Haonan, TAO Wenxia, CHENG Yongqiang. Selecting Execution Plan for Concurrent Queries Using LSTM-FCN [J]. Computer Engineering and Applications, 2022, 58(2): 86-94. |
[6] | XING Yongxin, SUN Youdong, WANG Tianyi. Individual Recognition of Dairy Cow Based on Improved SSD Algorithm [J]. Computer Engineering and Applications, 2022, 58(2): 208-214. |
[7] | WU Chenwen, LIANG Yuxin, TIAN Hongyan. Research on COVID-19 CT Image Classification Method Based on Improved Convolutional Neural Network [J]. Computer Engineering and Applications, 2022, 58(2): 225-234. |
[8] | DING Wenqian, YU Pengfei, LI Haiyan, LU Xinwei. Weakly Supervised Fine-Grained Image Classification Based on Xception Network [J]. Computer Engineering and Applications, 2022, 58(2): 235-243. |
[9] | LIU Zunxiong, SHI Yapeng, PENG Xiaoyu, WANG Yihong. Hyperspectral Image Classification Based on Two-Channel Variational Autoencoder [J]. Computer Engineering and Applications, 2022, 58(2): 244-251. |
[10] | CHEN Xitao, ZI Lingling, ZHANG Xueman. RGB-D Image Saliency Detection Using Skip-Layer Convolutional Neural Network [J]. Computer Engineering and Applications, 2022, 58(2): 252-258. |
[11] | FENG Jun, ZHANG Tao, HANG Tingting. Survey of Overlapping Entities and Relations Extraction [J]. Computer Engineering and Applications, 2022, 58(1): 1-11. |
[12] | WANG Wenxi, LI Lelin. Review of Deep Learning in Point Cloud Classification [J]. Computer Engineering and Applications, 2022, 58(1): 26-40. |
[13] | ZHANG Yu, GUO Wenzhong, LIN Sen, WEN Chaowu, LONG Jiehua. Review on Combination of Deep Learning and Knowledge Reasoning [J]. Computer Engineering and Applications, 2022, 58(1): 56-69. |
[14] | WANG Yuhang, JIANG Wengang, ZHAI Jiangtao, SHI Zhengshuang. Traffic Identification Method for SSL VPN Encryption [J]. Computer Engineering and Applications, 2022, 58(1): 143-151. |
[15] | HU Geng, CAI Yanguang. Research of DNN Adversarial Attack on COVID-19 CT Image Dataset [J]. Computer Engineering and Applications, 2022, 58(1): 152-157. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||