DING Wenqian, YU Pengfei, LI Haiyan, LU Xinwei. Weakly Supervised Fine-Grained Image Classification Based on Xception Network[J]. Computer Engineering and Applications, 2022, 58(2): 235-243.
[1] 罗建豪,吴建鑫.基于深度卷积特征的细粒度图像分类研究综述[J].自动化学报,2017,43(8):1306-1318.
LUO J H,WU J X.A survey on the classification of fine-grained images based on deep convolution features[J].Acta Automatica Sinica,2017,43(8):1306-1318.
[2] 郑远攀,李广阳,李晔.深度学习在图像识别中的应用研究综述[J].计算机工程与应用,2019,55(12):20-36.
ZHENG Y P,LI G Y,LI Y.Survey of application of deep learning in image recognition[J].Computer Engineering and Applications,2019,55(12):20-36.
[3] 张潜,桑军,吴伟群,等.基于Xception的细粒度图像分类[J].重庆大学学报,2018,41(5):85-91.
ZHANG Q,SANG J,WU W Q,et al.Fine-grained image classification based on Xception[J].Journal of Chongqing University,2018,41(5):85-91.
[4] WEI X S,XIE C W,WU J X,et al.Mask-CNN:localizing parts and selecting descriptors for fine-grained bird species categorization[J].Pattern Recogn,2018,76:704-714.
[5] LAM M,MAHASSENI B,TODOROVIC S.Fine-grained recognition as HSnet search for informative image parts[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,HI,USA,2017:6497-6506.
[6] LIN T Y,ROYCHOWDHURY A,MAJI S.Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV),Santiago,Chile,2015:1449-1457.
[7] FU J,ZHENG H,TAO M.Look closer to see better:recurrent attention convolutional neural network for fine-grained image recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition,Honolulu,HI,USA,2017:4438-4446.
[8] 黄伟锋,张甜,常东良,等.基于多视角融合的细粒度图像分类方法[J].信号处理,2020,36(9):1607-1614.
HUANG W F,ZHANG T,CHANG D L,et al.Multi-view comprehensive based fine-grained image classification[J].Journal of Signal Processing,2020,36(9):1607-1614.
[9] HU T,QI H,HUANG Q.See better before looking closer:weakly supervised data augmentation network for fine-grained visual classification[DB/OL].(2019-01-26)[2019-05-23].https://arxiv.org/abs/1901.09891.
[10] DEVRIES T,TAYLOR G W.Improved regularization of convolutional neural networks with cutout[DB/OL].(2017-08-15)[2017-11-29].https://arxiv.org/abs/1708.04552.
[11] CHOLLET F.Xception:deep learning with depthwise separable convolutions[DB/OL].(2016-10-07)[2017-04-04].https://arxiv.org/abs/1610.02357.
[12] WAH C,BRANSON S,WELINDER P,et al.The Caltech-UCSD birds-200-2011 dataset[Z].California Institute of Technology,2011:38-42.
[13] KHOSLA A,JAYADEVAPRAKASH N,YAO B,et al.Novel dataset for fine-grained image categorization[C]//First Workshop on Fine-Grained Visual Categorization(FGVC),IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2011.
[14] KRAUSE J,STARK M,DENG J,et al.3D object representations for fine-grained categorization[C]//2013 IEEE International Conference on Computer Vision Workshops,Sydney,2013:554-561.
[15] MAJI S,RAHTU E,KANNALA J,et al.Fine-grained visual classification of aircraft[DB/OL].[2013-01-21].https://arxiv.org/abs/1306.5151.
[16] HORN G V,BRANSON S,FARRELL R,et al.Building a bird recognition app and large scale dataset with citizen scientists:the fine print in fine-grained dataset collection[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Boston,MA,2015:595-604.
[17] WANG Y,MORARIU V I,DAVIS L S.Learning a discriminative filter bank within a CNN for fine-grained recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4148-4157.
[18] YANG Z,LUO T,WANG D,et al.Learning to navigate for fine-grained classification[C]//European Conference on Computer Vision,2018:438-454.
[19] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),Las Vegas,NV,2016:2818-2826.
[20] LI P,XIE J,WANG Q,et al.Towards faster training of global covariance pooling networks by iterative matrix square root normalization[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2018:947-955.
[21] SUN M,YUAN Y,ZHOU F,et al.Multi-attention multiclass constraint for fine-grained image recognition[C]//European Conference on Computer Vision,2018:834-850.
[22] CHI Y Z,SAMY B,MORITZ H,et al.Understanding deep learning requires rethinking generalization[DB/OL].(2016-11-10)[2017-03-26].https://arxiv.org/abs/1611.03530.
[23] GUO P,FARRELL R.Aligned to the object,not to the image:a unified pose-aligned representation for fine-grained recognition[DB/OL].(2018-01-27)[2018-09-11].https://arxiv.org/abs/1801.09057.
[24] ZHUANG P,WANG Y,QIAO Y.Learning attentive pairwise interaction for fine-grained classification[DB/OL].[2020-02-24].https://arxiv.org/abs/2002.10191.
[25] LUO W,YANG X,MO X,et al.Cross-X learning for fine-grained visual categorization[DB/OL].[2019-09-10].https://arxiv.org/abs/1909.04412.
[26] 陈幻杰,王琦琦,杨国威,等.多尺度卷积特征融合的SSD目标检测算法[J].计算机科学与探索,2019,13(6):1049-1061.
CHEN H J,WANG Q Q,YANG G W,et al.SSD object detetection algorithm with multi-scale convolution feature fusion[J].Journal of Frontiers of Computer Science and Technolody,2019,13(6):1049-1061.
ZHENG Fengxian, WANG Xiali, HE Dandan, LI Nini, FU Yangyang, YUAN Shaoxin.
Survey of Single Image Defogging Algorithm
[J]. Computer Engineering and Applications, 2022, 58(3): 1-14.