1.School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
2.CCCC Urban Rail Transit Design and Research Institute Co., Ltd., Wuhan 430056, China
[1] 倪杰,于莉,靳笑楠.基于ARIMA模型的城市轨道交通客流预测及研究[J].智能计算机与应用,2021,11(4):135-138.
NI J,YU L,JIN X N.Forecast and research of urban rail transit passenger flow based on ARIMA model[J].Intelligent Computer and Applications,2021,11(4):135-138.
[2] 宋龙泽,万怀宇,郭晟楠,等.面向出租车空载时间预测的多任务时空图卷积网络[J].计算机科学,2021,48(7):112-117.
SONG L Z,WAN H Y,GUO S N,et al.Multi-task spatio-temporal graph convolutional network for taxi idle time prediction[J].Computer Science,2021,48(7):112-117.
[3] 曲昭伟,王鑫,宋现敏,等.基于出租车GPS大数据的城市热点出行路段识别方法[J].交通运输系统工程与信息,2019,19(2):238-246.
QU Z W,WANG X,SONG X M,et al.Urban hotspot travel section identification method based on taxi GPS large data[J].Journal of Transportation Systems Engineering and Information Technology,2019,19(2):238-246.
[4] KONG X,XIAN F,WANG J,et al.Time-location-relationship combined service recommendation based on taxi trajectory data[J].IEEE Transportation on Industral Informatics,2017,6(3).
[5] 冯然,张力仁,王立辉.基于二阶马尔可夫链的不确定性轨迹预测[J].测绘与空间地理信息,2020,43(S1):207-211.
FENG R,ZHANG L R,WANG L H.Uncertainty trajectory prediction based on second-order Markov chain[J].Geomatics & Spatial Information Technology,2020,43(S1):207-211.
[6] LIU X,SUN L,SUN Q,et al.Spatial variation of taxi demand using GPS trajectories and POI data[J].Journal of Advanced Transportation,2020(12):1-20.
[7] 张政,陈艳艳,梁天闻.基于网约车数据的城市区域出行时空特征识别与预测研究[J].交通运输系统工程与信息,2020,20(3):89-94.
ZHANG Z,CHEN Y Y,LIANG T W.Regional travel demand mining and forecasting using car-hailing order records[J].Journal of Transportation Systems Engineering and Information Technology,2020,20(3):89-94.
[8] CHAN K Y,DILLON T,CHANG E,et al.Prediction of short-term traffic variables using intelligent swarm-based neural networks[J].IEEE Transactions on Control Systems Technology,2013,21(1):263-274.
[9] LIU T,WU W,ZHU Y,et al.Predicting taxi demands via an attention-based convolutional recurrent neural network[J].Knowledge-Based Systems,2020,206(1):106294.
[10] 张国兴,李亚东,张磊,等.基于SDZ-RNN的出租车出行目的地预测方法[J].计算机工程与应用,2018,54(6):143-149.
ZHANG G X,LI Y D,ZHANG L,et al.Taxi travel destination prediction based on SDZ-RNN[J].Computer Engineering and Applications,2018,54(6):143-149.
[11] 安磊,赵书良,武永亮,等.基于recurrent neural networks的网约车供需预测方法[J].计算机应用研究,2019,36(3):756-761.
AN L,ZHAO S L,WU Y L,et al.Prediction method of supply and demand for online car based on recurrent neural networks[J].Computer Application Research,2019,36(3):756-761.
[12] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.Lake Tahoe:ACM,2014:2672-2680.
[13] 代亮,梅洋,钱超,等.基于生成对抗网络的大规模路网交通流预测算法[J].控制与决策,2021,36(12):2937-2945.
DAI L,MEI Y,QIAN C,et al.Traffic flow forecasting algorithm for large-scale road network based on GAN[J].Control and Decision,2021,36(12):2937-2945.
[14] SAXENA D,CAO?J.D-GAN:deep generative adversarial nets for spatio-temporal prediction[J].arXiv:1907.08556,2019.
[15] YU H,LI Z,ZHANG G,et al.Extracting and predicting taxi hotspots in spatiotemporal dimensions using conditional generative adversarial neural networks[J].IEEE Transactions on Vehicular Technology,2020,69(4):3680-3692.
[16] MIRZA M,OSINDERO S.Conditional generative adversarial nets[J].arXiv:1411.1784,2014.
[17] ARJOVSKY M,CHINTALA S,BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning.Lake Tahoe:ACM,2017.
[18] BAI L,YAO L,KANHERE S S,et al.STG2Seq:Spatial-temporal graph to sequence model for multi-step passenger demand forecasting[J].arXiv:1905.10069,2019.
[19] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016.
[20] SHI X J,CHEN Z R,WANG H,et al.Convolutional LSTM network:a machine learning approach for precipitation nowcasting[J].arXiv:1506.04214,2015.
[21] WANG Y,LONG M,WANG J,et al.PredRNN:recurrent neural networks for prediction learning using spatiotemporal LSTMs[C]//31st Conference on Neural Information Processing Systems(NIPS 2017),Long Beach,CA,USA,2017.
[22] LIU L,QIU Z,LI G Q,et al.Contextualized spatial-temporal network for taxi origin-destination demand prediction[J].IEEE Transactions on Intelligent Transportation Systems,2019,20(10):3875-3887.
[23] 陈文强,吴群琪.城市交通拥堵背景下的出租车管制效应分析[J].华东交通大学学报,2012,29(5):68-73.
CHEN W Q,WU Q Q.Effect analysis of taxicab industry regulation in the context of urban traffic congestion[J].Journal of East China Jiaotong University,2012,29(5):68-73.