Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (6): 96-105.DOI: 10.3778/j.issn.1002-8331.2408-0411

• Special Issue on YOLOv8 Improvements and Applications • Previous Articles     Next Articles

Improving Lightweight Underwater Biological Detection Model of YOLOv8

MIN Feng, ZHANG Yuwei, LIU Yuhui, LIU Biao   

  1. Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan  430205, China
  • Online:2025-03-15 Published:2025-03-14

改进YOLOv8的轻量化水下生物检测模型

闵锋,张雨薇,刘煜晖,刘彪   

  1. 武汉工程大学 智能机器人湖北省重点实验室,武汉 430205

Abstract: Efficient detection of underwater biological resources in complex natural environments is of great significance to China’s fisheries. In order to solve the problems of weak detection ability and insufficient model generalization of YOLO series for complex underwater environments, a method for underwater biological target detection based on improved YOLOv8n, SGDC-YOLOv8, is proposed. Firstly, the idea of deep supervision is integrated into the detection head, using shared receptive field attention convolution to improve detection accuracy while optimizing the receptive field. An additional supervised loss function is introduced to achieve efficient parameter sharing in the detection head. Secondly, in order to reduce computational costs and parameter count, a lightweight gated regularization unit convolution module is designed to reduce the burden on the model. Aiming at the problem of easily blurred or lost features of underwater biological targets, shallow mixed pool downsampling module and deep maximum pool downsampling module are proposed to optimize multi-scale feature fusion and ensure the accuracy and completeness of key data. Finally, a convolutional and attention fusion CAFM module is added to the network to enhance global and local feature modeling. The experimental results on the publicly available dataset DUO show that compared to the baseline model YOLOv8n, SGDC-YOLOv8 increases by 2.5?percentage points at mAP@50, and 1.8 percentage points in mAP@50-95. It results in a decrease of 14.62% in parameter count and 15.85% in computational complexity. FPS increases to 146.2, which is also the best performance compared to other mainstream object detection models.

Key words: underwater target detection, YOLOv8, lightweight, depth supervision

摘要: 在复杂自然环境下高效探测水下生物资源对中国渔业具有重要意义,为了解决YOLO系列针对复杂的水下环境的检测能力较弱且模型泛化性不足等问题,提出一种基于改进YOLOv8n的水下生物目标检测的方法SGDC-YOLOv8。将深度监督的思想融入检测头,利用共享感受野注意力卷积提高检测精度的同时优化感受野,引入额外的监督损失函数来实现参数共享的高效检测头;为降低计算成本和参数量,设计了轻量化门控正则单元部分卷积模块为模型减负;针对水下生物目标的特征容易模糊或丢失的问题,提出浅层混合池下采样模块和深层最大池下采样模块,以优化多尺度特征融合,并保证关键数据的准确性和完整性;在网络中加入卷积与注意力融合CAFM模块来增强全局和局部的特征建模。在公开数据集DUO上的实验结果表明,相比于基线模型YOLOv8n,SGDC-YOLOv8在mAP@50上提升2.5个百分点,在mAP@50-95提升1.8个百分点,参数量和计算量分别降低14.62%和15.85%,FPS提升至146.2,相比于其他主流目标检测模型表现效果也最佳。

关键词: 水下目标检测, YOLOv8, 轻量化, 深度监督