[1] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 1-9.
[2] 郭守向, 张良. Yolo-C: 基于单阶段网络的X光图像违禁品检测[J]. 激光与光电子学进展, 2021, 58(8): 67-76.
GUO S X, ZHANG L. Yolo-C: one-stage network for prohibited items detection within X-ray images[J]. Laser & Optoelectronics Progress, 2021, 58(8): 67-76.
[3] 粟兴旺, 王晓明, 黄金玻, 等. 基于可变形卷积与注意力机制的X光安检违禁品检测[J]. 电子测量技术, 2023, 46(10): 98-108.
SU X W, WANG X M, HUANG J B et al. Prohibited items detection based on deformable convolution and attention mechanism in X-ray security inspection[J]. Electronic Measurement Technology, 2023, 46(10): 98-108.
[4] 游玺, 侯进, 任东升, 等. 融合空间注意力的自适应安检违禁品检测方法[J]. 计算机工程与应用, 2023, 59(21): 176-186.
YOU X, HOU J, REN D S, et al. Adaptive security check prohibited items detection method with fused spatial attention[J]. Computer Engineering and Applications, 2023, 59(21): 176-186.
[5] 李松, 亚森江·木沙. 改进YOLOv7的X射线图像违禁品实时检测[J]. 计算机工程与应用, 2023, 59(12): 193-200.
LI S, Yasenjiang Musa. Improved YOLOv7 X-ray image real-time detection of prohibited items[J]. Computer Engineering and Applications, 2023, 59(12): 193-200.
[6] 王海群, 魏培旭. 基于改进YOLOv8的X光图像违禁品检测[J]. 无线电工程, 2024(10): 2288-2295.
WANG H Q, WEI P X. X-ray image contraband detection based on improved YOLOv8[J]. Radio Engineering, 2024(10): 2288-2295.
[7] 董佳鑫, 罗婷, 李根, 等. 一种改进YOLOv8s的X射线安检图像违禁品检测方法[J]. 激光与光电子学进展, 2024, 61(22): 2215008.
DONG J X, LUO T, LI G, et al. Prohibited item detection method of X-ray security inspection image based on improved YOLOv8s[J]. Laser & Optoelectronics Progress, 2024, 61(22): 2215008.
[8] 武连全, 楚宪腾, 杨海涛, 等. 基于改进YOLOX的X射线违禁物品检测[J]. 红外技术, 2023, 45(4): 427-435.
WU L Q, CHU X T, YANG H T, et al. X-ray detection of prohibited items based on improved YOLOX[J]. Infrared Technology, 2023, 45(4): 427-435.
[9] 袁金豪, 张南峰, 阮洁珊, 等. 基于改进YOLOX算法的X射线图像违禁品检测方法[J]. 激光技术, 2023, 47(4): 547-552.
YUAN J H, ZHANG N F, RUAN J S, et al. Detection of prohibited items in X-ray images based on modified YOLOX algorithm[J]. Laser Technology, 2023, 47(4): 547-552.
[10] 张珂, 张良. 复杂背景下多尺度X光违禁品检测[J]. 激光与光电子学进展, 2021, 58(22): 102-112.
ZHANG K, ZHANG L. Multi-scale detection for X-ray prohibited items in complex background[J]. Laser & Optoelectronics Progress, 2021, 58(22): 102-112.
[11] 董乙杉, 李兆鑫, 郭靖圆, 等. 一种改进YOLOv5的X光违禁品检测模型[J]. 激光与光电子学进展, 2023, 60(4): 359-366.
DONG Y S, LI Z X, GUO J Y, et al. Improved YOLOv5 model for X-ray prohibited item detection[J]. Laser & Optoelectronics Progress, 2023, 60(4): 359-366.
[12] 成浪, 敬超, 陈文鹏. 基于神经网络架构搜索的X射线图像违禁品检测算法[J]. 科学技术与工程, 2024, 24(2): 665-675.
CHENG L, JING C, CHEN W P. LLP-NAS: prohibited item detection algorithm with neural network architecture search using X-ray images[J]. Science Technology and Engineering, 2024, 24(2): 665-675.
[13] 李舒婷, 姜永峰, 张良. 基于全卷积网络的X光图像违禁物品检测方法[J]. 计算机工程与设计, 2021, 42(11): 3188-3195.
LI S T, JIANG Y F, ZHANG L. Prohibited item detection method for X-ray images based on full convolutional net-work[J]. Computer Engineering and Design, 2021, 42(11): 3188-3195.
[14] 李文强, 陈莉, 谢旭, 等. 改进YOLOv5的X光图像违禁品检测算法[J]. 计算机工程与应用, 2023, 59(16): 170-176.
LI W Q, CHEN L, XIE X, et al. Algorithm for detecting prohibited items in X-ray images based on improved YOLOv5[J]. Computer Engineering and Applications, 2023, 59(16): 170-176.
[15] 程振伟, 李新伟. 基于FPID的小样本X射线图像违禁品检测[J]. 无线电工程, 2023, 53(8): 1836-1843.
CHENG Z W, LI X W. FPID-based contraband detection for small-sample X-ray images[J]. Radio Engineering, 2023, 53(8): 1836-1843.
[16] 王银, 王晨晨, 赵志诚, 等. 改进YOLOv8的安检违禁物品检测[J/OL]. 控制工程: 1-6[2024-04-26]. https://doi.org/10. 14107/j.cnki.kzgc.20230586.
WANG Y, WANG C C, ZHAO Z C, et al. Improvement of YOLOv8 for security check prohibited items detection[J/OL]. Control Engineering: 1-6[2024-04-26]. https://doi.org/10. 14107/j.cnki.kzgc.20230586.
[17] 张继龙, 赵军, 李金龙. 改进YOLOv7的X光图像危险品检测算法[J]. 计算机工程与应用, 2024, 60(10): 266-275.
ZHANG J L, ZHAO J, LI J L. Improved dangerous goods detection in X-ray images of YOLOv7[J]. Computer Engineering and Applications, 2024, 60(10): 266-275.
[18] 马新月, 汤文兵. 基于改进YOLOv5s的轻量化安检图像检测算法研究[J]. 佳木斯大学学报 (自然科学版), 2023, 41(6): 6-11.
MA X Y, TANG W B. Research on lightweight security image detection algorithm based on improved YOLOv5s[J]. Journal of Jiamusi University (Natural Science Edition), 2023, 41(6): 6-11.
[19] TERVEN J R, CóRDOVA ESPARZA D M. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. arXiv:2304.00501, 2023.
[20] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261-2269.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[22] MIAO C, XIE L, WAN F, et al. SIXray: a large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images[J]. arXiv:1901.00303, 2019.
[23] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV). Amsterdam: Springer, 2016: 21-37.
[24] JIANG H Z, LEARNED-MILLER E. Face detection with the Faster R-CNN[C]//Proceedings of the 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA, 2017: 650-657.
[25] WANG C Y, BOCHKOVSKIY A, LIAO H Y M, et al. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 7464-7475.
[26] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[27] 董乙杉, 郭靖圆, 李明泽, 等. 基于反向瓶颈和LCBAM设计的X光违禁品检测[J]. 计算机科学与探索, 2024, 18(5): 1259-1270.
DONG Y S, GUO J Y, LI M Z, et al. X-ray prohibited items detection based on inverted bottleneck and light convolution block attention module[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1259-1270.
[28] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[29] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[J]. arXiv:1910.03151, 2019. |