[1] CHEN S J, HOVDE D C, PETERSON K A, et al. Fire detection using smoke and gas sensors[J]. Fire Safety Journal, 2007, 42(8): 507-515.
[2] ZHENG R, ZHANG D, LU S, et al. Discrimination between fire smokes and nuisance aerosols using asymmetry ratio and two wavelengths[J]. Fire Technology, 2019, 55: 1753-1770.
[3] GUBBI J, MARUSIC S, PALANISWAMI M. Smoke detection in video using wavelets and support vector machines[J]. Fire Safety Journal, 2009, 44(8): 1110-1115.
[4] DI LASCIO R, GRECO A, SAGGESE A, et al. Improving fire detection reliability by a combination of videoanalytics[C]//Proceedings of the 11th International Conference on Image Analysis and Recognition (ICIAR 2014), Vilamoura, Portugal, 2014: 477-484.
[5] T?REYIN B U, DEDEO?LU Y, GüDüKBAY U, et al. Computer vision based method for real-time fire and flame detection[J]. Pattern Recognition Letters, 2006, 27(1): 49-58.
[6] 盛帅, 段先华, 胡维康, 等. Dynamic-YOLOX: 复杂背景下的苹果叶片病害检测模型[J]. 计算机科学与探索, 2024, 18(8): 2118-2129.
SHENG S, DUAN X H, HU W K, et al. Dynamic-YOLOX: detection model for apple leaf disease in complex background[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2118-2129.
[7] 颜豪男, 吕伏, 冯永安. 特征级自适应增强的无人机目标检测算法[J]. 计算机科学与探索, 2024, 18(6): 1566-1578.
YAN H N, LYU F, FENG Y A. Feature-level adaptive enhancement for UAV target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1566-1578.
[8] SUN S Z, MO B, XU J W, et al. Multi-YOLOv8: an infrared moving small object detection model based on YOLOv8 for air vehicle[J]. Neurocomputing, 2024, 588.
[9] ZHAO L, ZHI L Q, ZHAO C, et al. Fire-YOLO: a small target object detection method for fire inspection[J]. Sustainability, 2022, 14(9): 4930.
[10] CHEN C M, YU J, LIN Y Q, et al. Fire detection based on improved PP-YOLO[J]. Signal, Image and Video Processing, 2023, 17(4): 1061-1067.
[11] LI J W, TANG H, LI X D, et al. LEF-YOLO: a lightweight method for intelligent detection of four extreme wildfires based on the YOLO framework[J]. International Journal of Wildland Fire, 2023, 33(1).
[12] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324.
[13] CHOLLET F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[14] 王一旭, 肖小玲, 王鹏飞, 等. 改进YOLOv5s的小目标烟雾火焰检测算法[J]. 计算机工程与应用, 2023, 59(1): 72-81.
WANG Y X, XIAO X L, WANG P F, et al. Improved YOLOv5s small target smoke and fire detection algorithm[J]. Computer Engineering and Applications, 2023, 59(1): 72-81.
[15] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[16] 杜辰, 王兴, 董增寿, 等. 改进YOLOv5s的地下车库火焰烟雾检测方法[J]. 计算机工程与应用, 2024, 60(11): 298-308.
DU C, WANG X, DONG Z S, et al. Improved YOLOv5s flame and smoke detection method for underground garage[J]. Computer Engineering and Applications, 2024, 60(11): 298-308.
[17] CHEN G, CHENG R X, LIN X F, et al. LMDFS: a lightweight model for detecting forest fire smoke in UAV images based on YOLOv7[J]. Remote Sensing, 2023, 15(15): 3790.
[18] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[19] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 12021-12031.
[20] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style convnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[21] TANG L F, ZHANG H, XU H, et al. Rethinking the necessity of image fusion in high-level vision tasks: a practical infrared and visible image fusion network based on progressive semantic injection and scene fidelity[J]. Information Fusion, 2023, 99: 101870.
[22] OUYANG D, HE S, ZHANG G Z, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023: 1-5.
[23] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[24] ZHANG H, XU C, ZHANG S J. Inner-IOU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[25] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[26] TZUTA L. LabelImg. git code[EB/OL]. (2015). https://github. com/tzutalin/labelImg.
[27] YANG G Y, LEI J, ZHU Z K, et al. AFPN: asymptotic feature pyramid network for object detection[C]//Proceedings of the 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2023: 2184-2189.
[28] JOCHER G. Ultralytics YOLOv5[EB/OL]. (2020). https://github.com/ultralytics/yolov5.
[29] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[30] JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLOv8[EB/OL]. (2023). https://github.com/ultralytics/ultralytics.
[31] WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[J]. arXiv:2402.13616, 2024.
[32] WANG A, CHEN H, LIU L H, et al. YOLOv10: real-time end-to-end object detection[J]. arXiv:2405.14458, 2024.
[33] ZHAO Y A, LV W Y, XU S L, et al. Detrs beat YOLOs on real-time object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 16965-16974. |