[1] LI H, KADAV A, DURDANOVIC I, et al. Pruning filters for efficient ConvNets[C]//Proceedings of the International Conference on Learning Representations, Toulon, France, 2017: 24-26.
[2] CARREIRA-PERPINAN M A, IDELBAYEV Y. Learning compression algorithm for neural network pruning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 8532-8541.
[3] LIU N, MA X, XU Z, et al. AutoCompress: an automatic DNN structured pruning framework for ultra-high compression rates[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, California, USA, 2020: 4876-4883.
[4] HE Y, LIN J, LIU Z, et al. AMC: autoML for model compression and acceleration on mobile devices[C]//Proceedings of the European Conference on Computer Vision. Munich, Germany: Springer, 2018: 784-800.
[5] 刘阳, 滕颖蕾, 牛涛, 等. 基于深度强化学习的滤波器剪枝方案[J]. 北京邮电大学学报, 2023, 46(3): 31-36.
LIU Y, TENG Y L, NIU T, et al. Filter pruning algorithm based on deep reinforcement learning[J]. Journal of Beijing University of Posts and Telecommunications, 2023, 46(3): 31-36.
[6] ZHAO K, JAIN A, ZHAO M. Automatic attention pruning: improving and automating model pruning using attentions[C]//Proceedings of the International Conference on Artificial Intelligence and Statistics, 2023: 10470-10486.
[7] WANG N, CHOI J, BRAND D, et al. Training deep neural networks with 8-bit floating point numbers[C]//Advances in Neural Information Processing Systems, Montréal, Canada, 2018: 7675-7684.
[8] KHORAM S, LI J. Adaptive quantization of neural networks[C]//Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 2018.
[9] WANG K, LIU Z, LIN Y, et al. HAQ: hardware-aware automated quantization with mixed precision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 8612-8620.
[10] 吕君环, 许柯, 王东. 基于指数移动平均知识蒸馏的神经网络低比特量化方法[J]. 模式识别与人工智能, 2021, 34(12): 1143-1151.
Lü J H, Xü K, WANG D. Low-bit quantization of neural network based on exponential moving average knowledge distillation[J]. Pattern Recognition and Artificial Intelligence, 2021, 34(12): 1143-1151.
[11] JACOB B, KLIGYS S, CHEN B, et al. Quantization and training of neural networks for efficient integer arithmetic only inference[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 2704-2713.
[12] ELTHAKEB A T, PILLIGUNDLA P, MIRESHGHALLAH F, et al. ReLeQ: a reinforcement learning approach for automatic deep quantization of neural networks[J]. IEEE Micro, 2020, 40(5): 37-45.
[13] HAN S, MAO H Z, DALLY W J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding[J]. arXiv:1510.00149, 2015.
[14] WANG T, WANG K, CAI H, et al. APQ: joint search for network architecture, pruning and quantization policy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 2078-2087.
[15] 赵旭剑, 李杭霖. 基于混合机制的深度神经网络压缩算法[J]. 计算机应用, 2023, 43(9): 2686-2691.
ZHAO X J, LI H L. Deep neural network compression algorithm based on hybrid mechanism[J]. Journal of Computer Applications, 2023, 43(9): 2686-2691.
[16] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[17] KRIZHEVSKY A, HINTON G. Learning multiple layers of features from tiny images[J]. Handbook of Systemic Autoimmune Diseases, 2009, 1(4).
[18] HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[19] SANDLER M, HOWARD A, ZHU M, et al. MobileNetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 4510-4520.
[20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[21] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 770-778.
[22] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, 2017: 4700-4708. |