[1] 罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039.
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. Scientia Sinica (Informationis), 2022, 52(6): 1002-1039.
[2] COLLIN A S, DE VLEESCHOUWER C. Improved anomaly detection by training an autoencoder with skip connections on images corrupted with Stain-shaped noise[C]//Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 7915-7922.
[3] YAN X D, ZHANG H D, XU X M, et al. Learning semantic context from normal samples for unsupervised anomaly detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 3110-3118.
[4] DEFARD T, SETKOV A, LOESCH A, et al. PaDiM: a patch distribution modeling framework for anomaly detection and localization[C]//Proceedings of International Conference on Pattern Recognition. Cham: Springer, 2021: 475-489.
[5] RUDOLPH M, WANDT B, ROSENHAHN B. Same same but DifferNet: semi-supervised defect detection with normalizing flows[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 1906-1915.
[6] ZAVRTANIK V, KRISTAN M, SKO?AJ D. DRAEM-a discriminatively trained reconstruction embedding for surface anomaly detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2022: 8310-8319.
[7] WANG W Y, MI C F, WU Z H, et al. A real-time steel surface defect detection approach with high accuracy[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5005610.
[8] 张涛源, 谢新林, 谢刚, 等. 融合Transformer的带钢缺陷实时检测算法[J]. 计算机工程与应用, 2023, 59(16): 232-239.
ZHANG T Y, XIE X L, XIE G, et al. Real-time strip steel defect detection algorithm fused with transformer[J]. Computer Engineering and Applications, 2023, 59(16): 232-239.
[9] 窦智, 高浩然, 刘国奇, 等. 轻量化YOLOv8的小样本钢板缺陷检测算法[J]. 计算机工程与应用, 2024, 60(9): 90-100.
DOU Z, GAO H R, LIU G Q, et al. Small sample steel plate defect detection algorithm of lightweight YOLOv8[J]. Computer Engineering and Applications, 2024, 60(9): 90-100.
[10] BERGMANN P, FAUSER M, SATTLEGGER D, et al. Uninformed students: student-teacher anomaly detection with discriminative latent embeddings[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4182-4191.
[11] CAO Y K, XU X H, LIU Z G, et al. Collaborative discrepancy optimization for reliable image anomaly localization[J]. IEEE Transactions on Industrial Informatics, 2023, 19(11): 10674-10683.
[12] XIAO Q F, WANG J, LIN Y F, et al. Unsupervised anomaly detection with distillated teacher-student network ensemble[J]. Entropy, 2021, 23(2): 201.
[13] SALEHI M, SADJADI N, BASELIZADEH S, et al. Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14897-14907.
[14] 刘涛. 基于深度学习的磁瓦在线检测技术研究[D]. 杭州: 浙江大学, 2021.
LIU T. Research on online inspection technology of magnetic tiles based on deep learning[D]. Hangzhou: Zhejiang University, 2021.
[15] WANG G D, HAN S M, DING E R, et al. Student-teacher feature pyramid matching for anomaly detection[C]//Proceedings of the British Machine Vision Conference, 2021: 349.
[16] 程泽平. 基于正常样本学习的图像缺陷检测算法[D]. 北京: 北京邮电大学, 2022.
CHENG Z P. The image defect detection algorithm based on normal sample learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2022.
[17] DENG H Q, LI X Y. Anomaly detection via reverse distillation from one-class embedding[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9727-9736.
[18] RUDOLPH M, WEHRBEIN T, ROSENHAHN B, et al. Asymmetric student-teacher networks for industrial anomaly detection[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 2591-2601.
[19] 杨珂浩, 于龙, 高仕斌, 等. 基于无监督知识蒸馏的高铁绝缘子缺陷检测算法[J]. 电气化铁道, 2023, 34(1): 9-14.
YANG K H, YU L, GAO S B, et al. An algorithm for detection of insulator defects for high-speed railway based on unsupervised knowledge distillation[J]. Electric Railway, 2023, 34(1): 9-14.
[20] BATZNER K, HECKLER L, K?NIG R. EfficientAD: accurate visual anomaly detection at millisecond-level latencies[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 127-137.
[21] ZHANG X, LI S Y, LI X, et al. DeSTSeg: segmentation guided denoising student-teacher for anomaly detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3914-3923.
[22] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
[23] 高春艳, 秦燊, 李满宏, 等. 改进YOLOv7算法的钢材表面缺陷检测研究[J]. 计算机工程与应用, 2024, 60(7): 282-291.
GAO C Y, QIN S, LI M H, et al. Research on steel surface defect detection with improved YOLOv7 algorithm[J]. Computer Engineering and Applications, 2024, 60(7): 282-291.
[24] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[J]. arXiv:2005.12872, 2020.
[25] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[26] ZHENG Q H, WANG R Y, TIAN X Y, et al. A real-time transformer discharge pattern recognition method based on CNN-LSTM driven by few-shot learning[J]. Electric Power Systems Research, 2023, 219: 109241.
[27] 高琦, 付皓宇, 吴晓军, 等. 基于无监督学习的连铸铸坯缺陷检测方法[J]. 重型机械, 2024(3): 32-40.
GAO Q, FU H Y, WU X J, et al. Defect detection method for continuous casting billets based on unsupervised learning[J]. Heavy Machinery, 2024(3): 32-40.
[28] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv:1503.02531, 2015.
[29] WANG Z, JING J F. Pixel-wise fabric defect detection by CNNs without labeled training data[J]. IEEE Access, 2020, 8: 161317-161325.
[30] TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 24511-24520. |