[1] ZHANG X W, QIN F, QIN Y C. Study on the thick cloud removal method based on multi-temporal remote sensing images[C]//Proceedings of the 2010 International Conference on Multimedia Technology. Piscataway: IEEE, 2010: 1-3.
[2] GUO J H, YANG J Y, YUE H J, et al. RSDehazeNet: dehazing network with channel refinement for multispectral remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2535-2549.
[3] TOIZUMI T, ZINI S, SAGI K, et al. Artifact-free thin cloud removal using gans[C]//Proceedings of the 2019 IEEE International Conference on Image Processing. Piscataway: IEEE, 2019: 3596-3600.
[4] LI J, WU Z C, HU Z W, et al. Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 166: 373-389.
[5] LIN D Y, XU G L, WANG X K, et al. A remote sensing image dataset for cloud removal[J]. arXiv:1901.00600, 2019.
[6] LI X H, WANG L Y, CHENG Q, et al. Cloud removal in remote sensing images using nonnegative matrix factorization and error correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 148: 103-113.
[7] CHEN J, ZHU X L, VOGELMANN J E, et al. A simple and effective method for filling gaps in Landsat ETM+SLC-off images[J]. Remote Sensing of Environment, 2011, 115(4): 1053-1064.
[8] ZHU X L, GAO F, LIU D S, et al. A modified neighborhood similar pixel interpolator approach for removing thick clouds in landsat images[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 521-525.
[9] CHENG Q, SHEN H F, ZHANG L P, et al. Cloud removal for remotely sensed images by similar pixel replacement guided with a spatio-temporal MRF model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 54-68.
[10] YU W K, ZHANG X K, PUN M O. Cloud removal in optical remote sensing imagery using multiscale distortion-aware networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 5512605.
[11] ZHAO B W, ZHOU J L, XU H X, et al. PM-LSMN: a physical-model-based lightweight self-attention multiscale net for thin cloud removal[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5003405.
[12] WANG Y X, ZHANG B, ZHANG W J, et al. Cloud removal with SAR-optical data fusion using a unified spatial-spectral residual network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 62: 5600820.
[13] XU F, SHI Y L, EBEL P, et al. GLF-CR: SAR-enhanced cloud removal with global-local fusion[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 192: 268-278.
[14] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014.
[15] ENOMOTO K, SAKURADA K, WANG W M, et al. Filmy cloud removal on satellite imagery with multispectral conditional generative adversarial nets[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2017: 1533-1541.
[16] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014.
[17] LIU J T, HOU W M, LUO X, et al. SI-SA GAN: a generative adversarial network combined with spatial information and self-attention for removing thin cloud in optical remote sensing images[J]. IEEE Access, 2022, 10: 114318-114330.
[18] JIN M H, WANG P W, LI Y S. HyA-GAN: remote sensing image cloud removal based on hybrid attention generation adversarial network[J]. International Journal of Remote Sensing, 2024, 45(6): 1755-1773.
[19] SHEN R H, ZHANG X F, XIANG Y G. AFFNet: attention mechanism network based on fusion feature for image cloud removal[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(8): 2254014.
[20] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976.
[21] LIU H Y, JIANG B, XIAO Y, et al. Coherent semantic attention for image inpainting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4169-4178.
[22] CHEN D D, HE M M, FAN Q N, et al. Gated context aggregation network for image dehazing and deraining[C]//Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2019: 1375-1383.
[23] WU H Y, QU Y Y, LIN S H, et al. Contrastive learning for compact single image dehazing[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10546-10555.
[24] MOHAJERANI S, SAEEDI P. Cloud-net: an end-to-end cloud detection algorithm for landsat 8 imagery[C]//Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2019: 1029-1032.
[25] XU M, DENG F R, JIA S, et al. Attention mechanism-based generative adversarial networks for cloud removal in Landsat images[J]. Remote Sensing of Environment, 2022, 271: 112902.
[26] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015. |