
Computer Engineering and Applications ›› 2025, Vol. 61 ›› Issue (16): 205-214.DOI: 10.3778/j.issn.1002-8331.2405-0120
• Pattern Recognition and Artificial Intelligence • Previous Articles Next Articles
XU Fei, ZHANG Leyi, YU Tingting, ZHANG Ruixuan
Online:2025-08-15
Published:2025-08-15
徐飞,张乐怡,禹婷婷,张瑞轩
XU Fei, ZHANG Leyi, YU Tingting, ZHANG Ruixuan. Network Pruning Method Combining Channel Classification Contribution and Feature Scaling Coefficient[J]. Computer Engineering and Applications, 2025, 61(16): 205-214.
徐飞, 张乐怡, 禹婷婷, 张瑞轩. 结合通道分类贡献与特征缩放系数的网络剪枝方法[J]. 计算机工程与应用, 2025, 61(16): 205-214.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2405-0120
| [1] CHOI J, SIM H, OH S, et al. MLogNet: a logarithmic quantization-based accelerator for depthwise separable convolution[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41(12): 5220-5231. [2] JANG J G, QUAN C, LEE H D, et al. Falcon: lightweight and accurate convolution based on depthwise separable convolution[J]. Knowledge and Information Systems, 2023, 65(5): 2225-2249. [3] DING X H, ZHANG X Y, MA N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13728-13737. [4] YOUNG S I, ZHE W, TAUBMAN D, et al. Transform quantization for CNN compression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5700-5714. [5] ZHOU D Q, WANG K, GU J Y, et al. Dataset quantization[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 17159-17170. [6] LEE D, KIM C, KIM S, et al. Autoregressive image generation using residual quantization[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11513-11522. [7] XU J R, ZHAO Y F, XU F. RDPNet: a single-path lightweight CNN with re-parameterization for CPU-type edge devices[J]. Journal of Cloud Computing, 2022, 11(1): 54. [8] 牛鑫宇, 毛鹏军, 段云涛, 等. 基于YOLOv5s室内目标检测轻量化改进算法研究[J]. 计算机工程与应用, 2024, 60(3): 109-118. NIU X Y, MAO P J, DUAN Y T, et al. Research on lightweight improved algorithm for indoor target detection based on YOLOv5s[J]. Computer Engineering and Applications, 2024, 60(3): 109-118. [9] LUO W, LI T, YANG W D, et al. Depthwise separable convolution based lightweight HSRRS image classification method[C]//Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing. Piscataway: IEEE, 2020: 586-590. [10] ZHAO B R, CUI Q, SONG R J, et al. Decoupled knowledge distillation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11943-11952. [11] YANG Z D, LI Z, JIANG X H, et al. Focal and global knowledge distillation for detectors[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4633-4642. [12] BENATIA M A, AMARA Y, BOULAHIA S Y, et al. Block pruning residual networks using multi-armed bandits[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2023. DOI:10.1080/0952813X.2023.2247412. [13] NIU W, MA X L, LIN S, et al. PatDNN: achieving real-time DNN execution on mobile devices with pattern-based weight pruning[C]//Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems, 2020: 907-922. [14] CHEN C P, GUO Z C, ZENG H E, et al. RepGhost: a hardware-efficient ghost module via re-parameterization[J]. arXiv:2211.06088, 2022. [15] YANG H J, SHEN Z, ZHAO Y C. AsymmNet: towards ultralight convolution neural networks using asymmetrical bottle-necks[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2021: 2339-2348. [16] LIAO Z, QUéTU V, NGUYEN V T, et al. Can unstructured pruning reduce the depth in deep neural networks?[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2023: 1394-1398. [17] ZENG C Y, LIU L, ZHAO H C, et al. Causal unstructured pruning in linear networks using effective information[C]//Proceedings of the 2022 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Piscataway: IEEE, 2022: 294-302. [18] SHAHHOSSEINI S, ALBAQSAMI A, JASEMI M, et al. Partition pruning: parallelization-aware pruning for dense neural networks[C]//Proceedings of the 2020 28th Euro-micro International Conference on Parallel, Distributed and Network-Based Processing. Piscataway: IEEE, 2020: 307-311. [19] CHANG J F, LU Y, XUE P, et al. Global balanced iterative pruning for efficient convolutional neural networks[J]. Neural Computing and Applications, 2022, 34(23): 21119-21138. [20] YE H C, ZHANG B, CHEN T, et al. Performance-aware approximation of global channel pruning for multitask CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(8): 10267-10284. [21] KWON S J, LEE D, KIM B, et al. Structured compression by weight encryption for unstructured pruning and quantization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1906-1915. [22] PIETRO? M, ?UREK D, ?NIE?Y?SKI B. Speedup deep learning models on GPU by taking advantage of efficient unstructured pruning and bit-width reduction[J]. Journal of Computational Science, 2023, 67: 101971. [23] CHANG J F, LU Y, XUE P, et al. Iterative clustering pruning for convolutional neural networks[J]. Knowledge-Based Systems, 2023, 265: 110386. [24] MALLYA A, LAZEBNIK S. PackNet: adding multiple tasks to a single network by iterative pruning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7765-7773. [25] ZHAO C L, ZHANG Y X, NI B B. Exploiting channel similarity for network pruning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(9): 5049-5061. [26] CHENG Y J, WANG X Q, XIE X L, et al. Channel pruning guided by global channel relation[J]. Applied Intelligence, 2022, 52(14): 16202-16213. [27] HU W Z, CHE Z P, LIU N, et al. CATRO: channel pruning via class-aware trace ratio optimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(8): 11595-11607. [28] ZHANG Y X, LIN M B, LIN C W, et al. Carrying out CNN channel pruning in a white box[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7946-7955. [29] HAN F X, LI Y, WANG C S. Multi-threshold channel pruning method based on L1 regularization[J]. Journal of Physics: Conference Series, 2021, 1948(1): 012051. [30] SHAIKH A M, ZHAO Y B, KUMAR A, et al. Efficient Bayesian CNN model compression using Bayes by backprop and L1-norm regularization[J]. Neural Processing Letters, 2024, 56(2): 140. [31] WANG H, QIN C, ZHANG Y L, et al. Neural pruning via growing regularization[J]. arXiv:2012.09243, 2020. [32] 李小宁. 面向卷积神经网络模型加速方法的研究[D]. 济南: 山东师范大学, 2023. LI X N. Research on acceleration method of convolution neural network model[D]. Jinan: Shandong Normal University, 2023. [33] JIANG D, CAO Y, YANG Q. On the channel pruning using graph convolution network for convolutional neural network acceleration[C]//Proceedings of the 31st International Conference on Artificial Intelligence. Palo Alto: AAAI, 2022: 3107-3113. [34] CHEN T Y, DING T Y, ZHU Z H, et al. OTOv3: automatic architecture-agnostic neural network training and compression from structured pruning to erasing operators[J]. arXiv:2312.09411, 2023. [35] LIU X C, CAO J, YAO H Y, et al. AdaPruner: adaptive channel pruning and effective weights inheritance[J]. arXiv:2109.06397, 2021. [36] LIN L B, CHEN S J, YANG Y J, et al. AACP: model compression by accurate and automatic channel pruning[C]//Proceedings of the 2022 26th International Conference on Pattern Recognition. Piscataway: IEEE, 2022: 2049-2055. [37] XIE Z Y, FU Y, TIAN S Z, et al. Pruning with compensation: efficient channel pruning for deep convolutional neural networks[J]. arXiv:2108.13728, 2021. [38] LIN M B, CAO L J, LI S J, et al. Filter sketch for network pruning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(12): 7091-7100. [39] CHENG H J, WANG Z D, MA L F, et al. Multi-task pruning via filter index sharing: a many-objective optimization approach[J]. Cognitive Computation, 2021, 13(4): 1070-1084. [40] ELKERDAWY S, ELHOUSHI M, ZHANG H, et al. Fire together wire together: a dynamic pruning approach with self-supervised mask prediction[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12444-12453. [41] RUAN X F, LIU Y F, LI B, et al. DPFPS: dynamic and progressive filter pruning for compressing convolutional neural networks from scratch[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(3): 2495-2503. [42] ALWANI M, WANG Y, MADHAVAN V. DECORE: deep compression with reinforcement learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12339-12349. [43] HE Y, LIU P, ZHU L C, et al. Filter pruning by switching to neighboring CNNs with good attributes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 8044-8056. [44] LIU L, ZHANG S, KUANG Z, et al. Group fisher pruning for practical network compression[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 7021-7032. [45] CHENG H R, ZHANG M, SHI J Q. Influence function based second-order channel pruning-evaluating true loss changes for pruning is possible without retraining[J]. arXiv:2308.06755, 2023. [46] LAI B L, XIANG H R, SHEN F R. Inf-CP: a reliable channel pruning based on channel influence[J]. arXiv:2112. 02521, 2021. [47] LI G Q, LIU B W, CHEN A B. DDFP: a data driven filter pruning method with pruning compensation[J]. Journal of Visual Communication and Image Representation, 2023, 94: 103833. [48] GUO S P, WANG Y J, LI Q Q, et al. DMCP: differentiable Markov channel pruning for neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1536-1544. [49] LIU Z C, MU H Y, ZHANG X Y, et al. MetaPruning: meta learning for automatic neural network channel pruning[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3295-3304. [50] TMAMNA J, AYED E B, FOURATI R, et al. A CNN pruning approach using constrained binary particle swarm optimization with a reduced search space for image classification[J]. Applied Soft Computing, 2024, 164: 111978. [51] LIN M B, JI R R, WANG Y, et al. HRank: filter pruning using high-rank feature map[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1526-1535. [52] YEOM S K, SHIM K H, HWANG J H. Toward compact deep neural networks via energy-aware pruning[J]. arXiv: 2103.10858, 2021. |
| [1] | PANG Jun, MA Zhifen, LIN Xiaoli, WANG Mengxiang. Knowledge Hypergraph Link Prediction Based on GAT and Convolutional Neural Network [J]. Computer Engineering and Applications, 2025, 61(9): 194-201. |
| [2] | LI Ming, HE Zhiqi, DANG Qingxia, ZHU Shengli. Road Object Detection Algorithm for Outdoor Blind Navigation Scenariosc [J]. Computer Engineering and Applications, 2025, 61(9): 242-254. |
| [3] | CHEN Hong, YOU Yuzhu, JIN Haibo, WU Cong, ZOU Jiapeng. Fusion of Improved Sampling Technology and SRFCNN-BiLSTM Intrusion Detection Method [J]. Computer Engineering and Applications, 2025, 61(9): 315-324. |
| [4] | MENG Weichao, BIAN Chunjiang, NIE Hongbin. Method for Detecting Dim Small Infrared Targets with Low Signal-to-Noise Ratio in Complex Background [J]. Computer Engineering and Applications, 2025, 61(8): 183-193. |
| [5] | YAO Lisha. Facial Expression Recognition Method Based on Mixed Model of Measure Depth Attention [J]. Computer Engineering and Applications, 2025, 61(7): 245-254. |
| [6] | LI Min, LI Xuejun, LIAO Jing. Knowledge Graph Embedding Model Incorporating Multi-Level Convolutional Neural Networks [J]. Computer Engineering and Applications, 2025, 61(6): 192-198. |
| [7] | MA Zuxin, CUI Yunhe, QIN Yongbin, SHEN Guowei, GUO Chun, CHEN Yi, QIAN Qing. Fusion of Deep Reinforcement Learning in Joint Compression Method for Convolutional Neural Network [J]. Computer Engineering and Applications, 2025, 61(6): 210-219. |
| [8] | LIANG Chengwu , HU Wei, YANG Jie, JIANG Songqi, HOU Ning. Fusion of Spatio-Temporal Domain Knowledge and Data-Driven for Skeleton-Based Action Recognition [J]. Computer Engineering and Applications, 2025, 61(5): 165-176. |
| [9] | LI Xin, ZHANG Dan, GUO Xin, WANG Song, CHEN Enqing. Human Pose Estimation Based on Dual-Stream Fusion of CNN and Transformer [J]. Computer Engineering and Applications, 2025, 61(5): 187-199. |
| [10] | LI Xiaotong, MA Sufen, SHENG Hui, WEI Guohui, LI Xintong. Review of Lung CT Image Lesion Region Segmentation Based on Deep Learning [J]. Computer Engineering and Applications, 2025, 61(4): 25-42. |
| [11] | YUAN Heng, YAN Tinghao, ZHANG Shengchong. Two-Stage Feature Transfer Image Dehazing Algorithm [J]. Computer Engineering and Applications, 2025, 61(4): 241-252. |
| [12] | YU Yunhu, YANG Xiang, CHEN Yanhong. Lead Context Encoding Embedded GCN for Arrhythmia Classification [J]. Computer Engineering and Applications, 2025, 61(3): 212-222. |
| [13] | FENG Xingyu, ZHU Linglong, ZHANG Yonghong, KAN Xi, CAO Haixiao, MA Guangyi. Change Detection Algorithm Based on Multilateral Feature Guided Aggregation Network [J]. Computer Engineering and Applications, 2025, 61(3): 264-274. |
| [14] | LI Zehui, ZHANG Lin, SHAN Xianying. Review on Improvement and Application of 3D Convolutional Neural Networks [J]. Computer Engineering and Applications, 2025, 61(3): 48-61. |
| [15] | GUO Bingxuan, YANG Xiaowen, SUN Fusheng, KUANG Liqun, ZHANG Yuan, HAN Huiyan. Next Point of Interest Recommendation Fusing Crowd Movement Trajectories and Spatiotemporal-Category Features [J]. Computer Engineering and Applications, 2025, 61(2): 316-326. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||