[1] CHEN X, LI Z, YANG Y, et al. High-resolution vehicle trajectory extraction and denoising from aerial videos[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22 (5): 3190-3202.
[2] SUN W, DAI L, ZHANG X, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2021, 52: 8448-8463.
[3] GUAN Z, MIAO X, MU Y, et al. Forest fire segmentation from aerial imagery data using an improved instance segmentation model[J]. Remote Sensing, 2022, 14 (13): 3159.
[4] CHEN X, HOPKINS B, WANG H, et al. Wildland fire detection and monitoring using a drone-collected RGB/IR image dataset[J]. IEEE Access, 2022, 10: 121301-121317.
[5] CHIN R, CATAL C, KASSAHUN A. Plant disease detection using drones in precision agriculture[J]. Precision Agriculture, 2023, 24: 1663-1682.
[6] LI Y, CAO G, JI C, et al. Research on monitoring topping time of cotton based on AdaBoost+ decision tree[J]. Discrete Dynamics in Nature and Society, 2022, 13: 1-15.
[7]DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005: 886-893.
[8] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57: 137-154.
[9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[10] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[11] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137-1149.
[12] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, 2016: 21-37.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[14] REN C, HE X, WANG C, et al. Adaptive consistency prior based deep network for image denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8596-8606.
[15] DUAN H, XU X, DENG Y, et al. Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3368-3382.
[16] 关家志. 基于特征融合的复杂天气下图像识别鲁棒模型[J]. 信息与电脑 (理论版), 2022, 34(7): 143-145.
GUAN J Z. Robust image recognition model under complex weather based on feature fusion[J]. Information and Computer (Theoretical Version), 2022, 34(7): 143-145.
[17] JUNOS M H, KHAIRUDDIN M A S, THANNIRMALAI S, et al. Automatic detection of oil palm fruits from UAV images using an improved YOLO model[J]. The Visual Computer, 2022, 38 (7): 2341-2355.
[18] 李校林, 刘大东, 刘鑫满, 等. 改进YOLOv5的无人机航拍图像目标检测算法[J]. 计算机工程与应用, 2024, 60(11): 204-214.
LI J L, LIU D D, LIU X M, et al. Target detection algorithm of UAV aerial image based on improved YOLOv5[J]. Computer Engineering and Applications, 2024, 60(11): 204-214.
[19] BAO W, DU X, WANG N, et al. A defect detection method based on BC-YOLO for transmission line components in uav remote sensing images[J]. Remote Sensing, 2022, 14 (20): 5176.
[20] HU G, YAO P, WAN M, et al. Detection and classification of diseased pine trees with different levels of severity from UAV remote sensing images[J]. Ecological Informatics, 2022, 72: 101844.
[21] TAN L, LV X, LIAN X, et al. YOLOv4_Drone: UAV image target detection based on an improved YOLOv4 algorithm[J]. Computers & Electrical Engineering, 2021, 93: 107261.
[22] ZHENG Q, SAPONARA S, TIAN X, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18: 659-671.
[23] ZHANG Z. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7 (8): 526.
[24] ZHENG Q, TIAN X, YU Z, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7 (10): 596.
[25] COURTRAI L, PHAM M T, LEFèVRE S. Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks[J]. Remote Sensing, 2020, 12(19): 3152.
[26] ZHANG J, LEI J, XIE W, et al. SuperYOLO: super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-15.
[27] 李南星. 基于BERT和提示学习的改进句向量文本表示[D]. 汕头: 汕头大学, 2022.
LI N X. Improvedsentence embedding based on BERT and prompt-learning[D]. Shantou: Shantou University, 2022.
[28] LI Z, JIN J, LONG W, et al. PLPMpro: enhancing promoter sequence prediction with prompt-learning based pre-trained language model[J]. Computers in Biology and Medicine, 2023, 164: 107260.
[29] 杨鹏跃, 王锋, 魏巍. 面向CNN和Transformer的自注意力机制自适应性提示学习[J/OL]. 小型微型计算机系统: 1-8 [2024-02-27]. http://kns.cnki.net/kcms/detail/21.1106.TP.20240130.
1433.010. html.
YANG P Y, WANG F, WEI W. Self-attention mechanism adaptive prompt learning for CNNs and transformers[J/OL]. Microcomputer System: 1-8 [2024-02-27]. http://kns.cnki.net/kcms/detail/21.1106.TP.0240130.1433.010.html.
[30] POTLAPALLI V, ZAMIR S W, KHAN S, et al. PromptIR: prompting for all-in-one blind image restoration[J]. arXiv:2306.13090, 2023.
[31] ZAMIR S W, ARORA A, KHAN S, et al. Restormer: efficient transformer for high-resolution image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5728-5739.
[32] WEI J, HE Y, WANG F, et al. Convolutional neural network assisted infrared imaging technology: an enhanced online processing state monitoring method for laser powder bed fusion[J]. Infrared Physics & Technology, 2023, 131: 104661.
[33] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352.
[34] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 213-226.
[35] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[36] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[37] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[38] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[39] ZHAO Y, LV W, XU S, et al. Detrs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023. |