[1] 郑冶枫, 刘长松, 丁晓青, 等. 基于有向单连通链的表格框线检测算法[J]. 软件学报, 2002, 13(4): 790-796.
ZHENG Y F, LIU C S, DING X Q, et al. Table box line detection algorithm based on directed single connected chain[J]. Journal of Software, 2002, 13(4): 790-796.
[2] TENSMEYER C, MORARIU V I, PRICE B, et al. Deep splitting and merging for table structure decomposition[C]//Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 114-121.
[3] KHAN S A, KHALID S M D, SHAHZAD M A, et al. Table structure extraction with bi-directional gated recurrent unit networks[C]//Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 1366-1371.
[4] KOCI E, THIELE M, ROMERO O, et al. A genetic-based search for adaptive table recognition in spreadsheets[C]// Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 1274-1279.
[5] DéJEAN H, MEUNIER J L. Table rows segmentation[C]//Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 461-466.
[6] SIDDIQUI S A, FATEH I A, RIZVI S T R, et al. DeepTabStR:deep learning based table structure recognition[C]//Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 1403-1409.
[7] XUE W, LI Q, TAO D. ReS2TIM: reconstruct syntactic structures from table images[C]//Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 749-755.
[8] SIDDIQUI S A, KHAN P I, DENGEL A, et al. Rethinking semantic segmentation for table structure recognition in documents[C]//Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 1397-1402.
[9] LONG R, WANG W, XUE N, et al. Parsing table structures in the wild[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 924-932.
[10] LIN W, SUN Z, MA C, et al. TSRFormer: table structure recognition with transformers[C]//Proceedings of the 30th ACM International Conference on Multimedia, Association for Computing Machinery, 2022: 6473-6482.
[11] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 213-229.
[12] XING H, GAO F, LONG R, et al. LORE: logical location regression network for table structure recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 2992-3000.
[13] XUE W, YU B, WANG W, et al. TGRNet: a table graph reconstruction network for table structure recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 1275-1284.
[14] LIU H, LI X, LIU B, et al. Neural collaborative graph machines for table structure recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4523-4532.
[15] HUANG Y, LU N, CHEN D, et al. Improving table structure recognition with visual-alignment sequential coordinate modeling[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 11134-11143.
[16] LIU H, LI X, GONG M, et al. Grab what you need: rethinking complex table structure recognition with flexible components deliberation[J]. arXiv: 2303.09174, 2023.
[17] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 9992-10002.
[18] QI Y, HE Y, QI X, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision, 2023: 6047-6056.
[19] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[20] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[21] JOCHER G, CHAURASIA A, QIU J. Ultralytics YOLO[CP/OL]. [2024-06-01]. https://github.com/ultralytics/ultralytics.
[22] G?BEL M, HASSAN T, ORO E, et al. ICDAR 2013 table competition[C]//Proceedings of the 2013 12th International Conference on Document Analysis and Recognition, 2013: 1449-1453.
[23] ZHONG X, SHAFIEIBAVANI E, JIMENO Y A. Image-based table recognition: data, model, and evaluation[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 564-580.
[24] 郑剑锋, 张广涛, 刘英莉. 基于自适应注意力机制的表格结构识别模型[J]. 化工自动化及仪表, 2024, 51(3): 449-455.
ZHENG J F, ZHANG G T, LIU Y L. Table structure recognition model based on adaptive attention mechanism[J]. Control and Instruments In Chemical Industry, 2024, 51(3):449-455.
[25] CHI Z, HUANG H, XU H, et al. Complicated table structure recognition[J]. arXiv:1908.04729, 2019.
[26] GAO L, HUANG Y, DéJEAN H, et al. ICDAR 2019 competition on table detection and recognition[C]//Proceedings of the 2019 International Conference on Document Analysis and Recognition, 2019: 1510-1515.
[27] ZHENG Q, SAPONARA S, TIAN X, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[28] ZHENG Q, TIAN X, YU Z, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[29] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 618-626. |