[1] ZOU Z, CHEN K, SHI Z, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[2] 杜紫薇, 周恒, 李承阳, 等. 面向深度卷积神经网络的小目标检测算法综述[J]. 计算机科学, 2022, 49(12): 205-218.
DU Z W, ZHOU H, LI C Y, et al. Small object detection based on deep convolutional neural networks: a review[J]. Computer Science, 2022, 49(12): 205-218.
[3] 李建, 杜建强, 朱彦陈, 等. 基于Transformer的目标检测算法综述[J]. 计算机工程与应用, 2023, 59(10): 48-64.
LI J, DU J Q, ZHU Y C, et al. Survey of Transformer-based object detection algorithms[J]. Computer Engineering and Applications, 2023, 59(10): 48-64.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014.
[5] LIU W, ANGUELOV D , ERHAN D , et al. SSD: single shot multibox detector[J]. arXiv:1512.02325, 2015.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[7] REDMON J , FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[8] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] WANG C Y, BOCHKOVSKIY A, LIAO H. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[11] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[12] HU J, SHEN L , SUN G . Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
[13] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[14] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
[15] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[16] 张效娟, 赵元豪, 赵洋. 基于环形平滑YOLOv5-Ghost的唐卡元素自动检测算法[J]. 山西大学学报(自然科学版), 2023, 46(2): 342-351.
ZHANG X J, ZHAO Y H, ZHAO Y. Automatic detection algorithm of Thangka elements based on YOLOv5-ghost[J]. Journal of Shanxi University (Natural Science Edition), 2023, 46(2): 342-351.
[17] 彭成, 张乔虹, 唐朝晖, 等. 基于YOLOv5增强模型的口罩佩戴检测方法研究[J]. 计算机工程, 2022, 48(4): 39-49.
PENG C, ZHANG Q H, TANG C H, et al. Research on mask wearing detection method based on YOLOv5 enhancement model[J]. Computer Engineering, 2022, 48(4): 39-49.
[18] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73.
QIU T H, WANG L, WANG P, et al. Research on object detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73.
[19] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[20] ZHANG H, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization [J]. arXiv:1710.09412, 2017.
[21] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
[22] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |