[1] 王万良, 王铁军, 陈嘉诚, 等. 融合多尺度和多头注意力的医疗图像分割方法[J]. 浙江大学学报(工学版), 2022, 56(9): 1796-1805.
WANG W L, WANG T J, CHEN J C, et al. Medical image segmentation method combining multi-scale and multi-head attention[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(9): 1796-1805.
[2] HONG S, YOU T, KWAK S, et al. Online tracking by learning discriminative saliency map with convolutional neural network[C]//Proceedings of the International Conference on Machine Learning, 2015: 597-606.
[3] 杜佳锦, 柏正尧, 刘旭珩, 等. 融合几何注意力和多尺度特征点云配准网络[J]. 计算机工程与应用, 2024, 60(12): 234-244.
DU J J, BAI Z Y,LIU X H, et al. Fusion of geometric attention and multi-scale feature network for point cloud registration[J]. Computer Engineering and Applications, 2024, 60(12): 234-244.
[4] QU L Q, HE S F, ZHANG J W, et al. RGBD salient object detection via deep fusion. [J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2017, 26(5): 2274-2285.
[5] WANG N, GONG X. Adaptive fusion for RGB-D salient object detection[J]. IEEE Access, 2019, 7: 55277-55284.
[6] ZHANG M, REN W, PIAO Y, et al. Select, supplement and focus for RGB-D saliency detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3472-3481.
[7] LI G, LIU Z, YE L, et al. Cross-modal weighting network for RGB-D salient object detection[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, August 23-28, 2020. [S.l.]: Springer International Publishing, 2020: 665-681.
[8] ZHANG J, FAN D P, DAI Y, et al. Uncertainty inspired RGB-D saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(9): 5761-5779.
[9] FAN D P, LIN Z, ZHANG Z, et al. Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(5): 2075-2089.
[10] ZHANG W, JI G P, WANG Z, et al. Depth quality-inspired feature manipulation for efficient RGB-D salient object detection[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 731-740.
[11] 程艳, 蔡壮, 吴刚, 等. 结合自注意力特征过滤分类器和双分支GAN的面部表情识别[J]. 模式识别与人工智能, 2022, 35(3): 11-17.
CHENG Y, CAI Z, WU G, et al. Facial expression recognition combining self-attention feature filtering classifier and two-branch GAN[J]. Pattern Recognition and Artificial Intelligence, 2022, 35(3): 11-17.
[12] 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610.
XIA H B, XIAO Y F, LIU Y. Long text generation adversarial network model with self-attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610.
[13] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[14] YU C, WANG J, PENG C, et al. Learning a discriminative feature network for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1857-1866.
[15] 沈怀艳, 吴云. 基于MSFA-Net的肝脏CT图像分割方法[J]. 计算机科学与探索, 2023, 17(3): 646-656.
SHEN H Y, WU Y. Liver CT image segmentation method based on MSFA-Net[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 646-656.
[16] JU R, LIU Y, REN T, et al. Depth-aware salient object detection using anisotropic center-surround difference[J]. Signal Process: Image Communication, 2015, 38: 115-126.
[17] PENG H, LI B, XIONG W, et al. RGBD salient object detection: a benchmark and algorithms[C]//Proceedings of the 13th European Conference on Computer Vision (ECCV 2014). Zurich, Switzerland: IEEE, 2014: 92-109.
[18] NIU Y, GENG Y, LI X, et al. Leveraging stereopsis for saliency analysis[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 454-461.
[19] CHENG Y, FU H, WEI X, et al. Depth enhanced saliency detection method[C]//Proceedings of International Conference on Internet Multimedia Computing and Service (ICIMCS’14), Xiamen, China, 2014: 23-27.
[20] LI N, YE J, JI Y, et al. Saliency detection on light field[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(8): 1605-1616.
[21] CHEN S, FU Y. Progressively guided alternate refinement network for RGB-D salient object detection[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, August 23-28, 2020. [S.l.]: Springer International Publishing, 2020: 520-538.
[22] FU K, FAN D P, JI G P, et al. Siamese network for RGB-D salient object detection and beyond[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5541-5559.
[23] PANG Y, ZHANG L, ZHAO X, et al. Hierarchical dynamic filtering network for RGB-D salient object detection[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, August 23-28, 2020. [S.l.]: Springer International Publishing, 2020: 235-252.
[24] LIU Z, TANG J, XIANG Q, et al. Salient object detection for RGB-D images by generative adversarial network[J]. Multimedia Tools and Applications, 2020, 79(35): 25403- 25425.
[25] JI W, LI J, ZHANG M, et al. Accurate RGB-D salient object detection via collaborative learning[C]//Proceedings of IEEE European Conference on Computer Vision. Cham: Springer, 2020: 52-69.
[26] LUO A, LI X, YANG F, et al. Cascade graph neural networks for RGB-D salient object detection[C]//Proceedings of the 16th European Conference on Computer Vision (ECCV 2020), Glasgow, UK, August 23-28, 2020. [S.l.]: Springer International Publishing, 2020: 346-364.
[27] ZHANG M, YAO S, HU B, et al. C2DFNet: criss-cross dynamic filter network for RGB-D salient object detection[J]. IEEE Transactions on Multimedia, 2024, 25: 5142-5154.
[28] ZHANG Z, LIN Z, XU J, et al. Bilateral attention network for RGB-D salient object detection[J]. IEEE Transactions on Image Processing, 2021, 30: 1949-1961.
[29] ZHAO X, PANG Y, ZHANG L, et al. Self-supervised pretraining for RGB-D salient object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 3463-3471.
[30] SHU J, YUAN X, MENG D, et al. CMW-Net: learning a class-aware sample weighting mapping for robust deep learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 11521-11539. |