[1] 杨艳艳, 李雷孝, 林浩. 提取驾驶员面部特征的疲劳驾驶检测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1249-1267.
YANG Y Y, LI L X, LIN H. Review of research on fatigue driving detection based on driver facial features[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1249-1267.
[2] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L,DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[3] 曹阳, 曹存根, 资康莉, 等. 基于BiLSTM-CRF的中文分组单字错误识别方法研究[J]. 中文信息学报, 2023, 37(4): 156-165.
CAO Y, CAO C G, ZI K L, et al. Chinese typos recognitionby character grouping and BiLSTM-CRF[J]. Journal of Chinese Information Processing, 2023, 37(4): 156-165.
[4] REN S Q, HE K M,GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[5] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//IEEE International Conference on Computer Vision, 2017: 2961-2969.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Computer Vision & Pattern Recognition, 2016.
[7] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[8] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[11] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[12] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021.
[13] WANG C Y, YEH I H, LIAO H Y M. You only learn one representation: unified network for multiple tasks[J]. arXiv:2105.04206, 2021.
[14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Msterdam, The Netherlands, October 11-14, 2016. [S.l.]: Springer International Publishing, 2016: 21-37.
[15] 程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258.
CHEN J Y, DUAN X H, ZHU W. Research on metal surface defect detection by improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(19): 252-258.
[16] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[17] SHEN D, LIU X, SHANG Y, et al. Deep learning-based automatic defect detection method for sewer pipelines[J]. Sustainability, 2023, 15(12): 9164.
[18] ZHAO H Q, ZHANG T S. Fabric surface defect detection using SE-SSDNet[J]. Symmetry,2022,14(11):2373.
[19] SHARMA M, LIM J, LEE H. The amalgamation of the object detection and semantic segmentation for steel surface defect detection[J]. Applied Sciences, 2022, 12(12): 6004.
[20] GUO Z X, WANG C S, YANG G, et al. MSFT-YOLO: improved YOLOv5 based on transformer for detecting defects of steel surface[J]. Sensors, 2022, 22(9): 3467.
[21] WU Y, CHEN Y, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10186-10195.
[22] SONG G, LIU Y, WANG X. Revisiting the sibling head in object detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11563-11572.
[23] ZHUANG J, QIN Z, YU H, et al. Task-specific context decoupling for object detection[J]. arXiv:2303.01047, 2023.
[24] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//AAAI Conference on Artificial Intelligence, 2020: 12993-13000. |