[1] ZOU Z, CHEN K, SHI Z, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111 (3): 257-276.
[2] VIOLA P, JONES M J. Robust real-time face detection[J]. International Journal of Computer Vision, 2004, 57: 137-154.
[3] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005: 886-893.
[4] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D. Cascade object detection with deformable part models[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 2241-2248.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[7] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[8] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[10] YUN S, HAN D, OH S J, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6023-6032.
[11] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[12] WANG J, CHEN Y, DONG Z, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35(10): 7853-7865.
[13] MUZAMMUL M, LI X. A survey on deep domain adaptation and tiny object detection challenges, techniques and datasets[J]. arXiv:2107.07927, 2021.
[14] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[15] 谌海云, 黄忠义, 王海川, 等. 基于改进Tracktor的行人多目标跟踪算法[J]. 计算机工程与应用, 2024, 60(8): 242-249.
SHEN H Y, HUANG Z Y, WANG H C, et al. Improved Tracktor-based pedestrian multi-objective tracking algorithm[J]. Computer Engineering and Applications, 2024, 60(8): 242-249.
[16] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1112-1125.
[17] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[18] ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 2235-2239.
[19] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[20] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[21] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[22] 童小钟, 魏俊宇, 苏绍璟, 等. 融合注意力和多尺度特征的典型水面小目标检测[J]. 仪器仪表学报, 2023, 44(1): 212-222.
TONG X Z, WEI J Y, SU S J, et al. Typical small target detection on water surfaces fusing attention and multi-scale features[J]. Chinese Journal of Scientific Instrument, 2023, 44(1): 212-222.
[23] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[24] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
WU M J, YUN L J, CHEN Z Q. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199.
[25] WANG J, LIU W, ZHANG W, et al. LV-YOLOv5: a light-weight object detector of Vit on Drone-captured scenarios[C]//2022 16th IEEE International Conference on Signal Processing (ICSP), 2022: 178-183.
[26] LIU H, DUAN X, LOU H, et al. Improved GBS-YOLOv5 algorithm based on YOLOv5 applied to UAV intelligent traffic[J]. Scientific Reports, 2023, 13(1): 9577.
[27] GE Z, LIU S, WANG F, et al. Yolox: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[28] WANG X, HE N, HONG C, et al. YOLO-ERF: lightweight object detector for UAV aerial images[J]. Multimedia Systems, 2023, 29: 3329-3339.
[29] GUO J, LOU H, CHEN H, et al. A new detection algorithm for alien intrusion on highway[J]. Scientific Reports, 2023, 13(1): 10667.
[30] YANG Y, GAO X, WANG Y, et al. VAMYOLOX: an accurate and efficient object detection algorithm based on visual attention mechanism for UAV optical sensors[J]. IEEE Sensors Journal, 2022, 23(11): 11139-11155.
[31] LOU H, DUAN X, GUO J, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323.
[32] TANG F, YANG F, TIAN X. Long-distance person detection based on YOLOv7[J]. Electronics, 2023, 12(6): 1502.
[33] LUITEN J, OSEP A, DENDORFER P, et al. Hota: a higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision, 2021, 129: 548-578. |