[1] 谷永立, 宗欣欣. 基于深度学习的目标检测研究综述[J]. 现代信息科技, 2022, 6(11): 76-81.
GU Y L, ZONG X X. A review of object detection study based on deep learning[J]. Modern Information Technology, 2022, 6(11): 76-81.
[2] 侯学良, 单腾飞, 薛靖国. 深度学习的目标检测典型算法及其应用现状分析[J]. 国外电子测量技术, 2022, 41(6): 165-174.
HOU X L, SHAN T F, XUE J G. Analysis of typical target detection algorithm based on deep learning and its application status[J]. Foreign Electronic Measurement Technology, 2022, 41(6): 165-174.
[3] 朱豪, 周顺勇, 刘学, 等. 基于深度学习的单阶段目标检测算法综述[J]. 工业控制计算机, 2023, 36(4): 101-103.
ZHU H, ZHOU S Y, LIU X, et al. Survey of single-stage object detection algorithms based on deep learning[J]. Industrial Control Computer, 2023, 36(4): 101-103.
[4] CHEN C, LIU M Y, TUZEL O, et al. R-CNN for small object detection[C]//13th Asian Conference on Computer Vision Computer Vision (ACCV 2016), Taipei, China, November 20-24, 2016. [S.l.]: Springer International Publishing, 2017: 214-230.
[5] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014. [S.l.]: Springer International Publishing, 2014: 740-755.
[6] 戚玲珑, 高建瓴. 基于改进YOLOv7的小目标检测[J]. 计算机工程, 2023, 49(1): 41-48.
QI L L, GAO J L. Small object detection based on improved YOLOv7[J]. Computer Engineering, 2023, 49(1): 41-48.
[7] 陈富荣, 肖明明. 基于YOLOv5的改进小目标检测算法研究[J]. 现代信息科技, 2023, 7(3): 55-60.
CHEN F R, XIAO M M. Research on improved algorithm of small target detection based on YOLOv5[J]. Modern Information Technology, 2023, 7(3): 55-60.
[8] 韩俊, 袁小平, 王准, 等. 基于YOLOv5s的无人机密集小目标检测算法[J]. 浙江大学学报 (工学版), 2023, 57(6): 1224-1233.
HAN J, YUAN X P, WANG Z, et al. UAV dense small target detection algorithm based on YOLOv5s[J]. Journal of Zhejiang University (Engineering Science), 2023, 57(6): 1224-1233.
[9] 张徐, 朱正为, 郭玉英, 等. 基于cosSTR-YOLOv7的多尺度遥感小目标检测[J/OL]. 电光与控制: 1-9[2023-08-04]. http://kns.cnki.net/kcms/detail/41.1227.tn.20230615.1017.
002.html.
ZHANG X, ZHU Z W, GUO Y Y, et al. Multi-scale remote sensing small target detection based on cosSTR-YOLOv7[J/OL]. Electronics Optics & Control: 1-9[2023-08-04]. http://kns.cnki.net/kcms/detail/41.1227.tn.20230615.1017.002.html.
[10] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[11] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[12] ZHANG G, LI Z, LI J, et al. Cfnet: cascade fusion network for dense prediction[J]. arXiv:2302.06052, 2023.
[13] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976-11986.
[14] DING X, ZHANG X, HAN J, et al. Scaling up your kernels to 31x31: revisiting large kernel design in CNNs[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11963-11975.
[15] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[17] DING X, ZHANG X, MA N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13733-13742.
[18] 俞军, 贾银山. 改进YOLOv5的小目标检测算法[J]. 计算机工程与应用, 2023, 59(12): 201-207.
YU J, JIA Y S. Improved YOLOv5 for small object detection algorithm[J]. Computer Engineering and Applications, 2023, 59(12): 201-207.
[19] WANG S C, ZHU R G, HUANG Z T, et al. Synergetic application of thermal imaging and CCD imaging techniques to detect mutton adulteration based on data-level fusion and deep residual network[J]. Meat Science, 2023, 204: 109281.
[20] HAN Q, FAN Z, DAI Q, et al. On the connection between local attention and dynamic depth-wise convolution[J]. arXiv:2106.04263, 2021.
[21] 赵春江, 梁雪文, 于合龙, 等. 基于改进YOLO v7的笼养鸡/蛋自动识别与计数方法[J]. 农业机械学报, 2023, 54(7): 300-312.
ZHAO C J, LIANG X W, YU H L, et al. Automatic identification and counting method of caged hens and eggs based on improved YOLO v7[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 300-312.
[22] 郑世杰, 王高才. 基于ConvNeXt热图定位和对比学习的细粒度图像分类研究[J]. 计算机科学, 2023, 50(10): 119-125.
ZHENG S J, WANG G C. Study on fine-grained image classification based on ConvNeXt heatmap localization and contrastive learning[J]. Computer Science, 2023, 50(10): 119-125.
[23] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[24] 陈鸿坤, 罗会兰. 多尺度语义信息融合的目标检测[J]. 电子与信息学报, 2021, 43(7): 2087-2095.
CHEN H K, LUO H L. Multi-scale semantic information fusion for object detectio[J]. Journal of Electronics & Information Technology, 2021, 43(7): 2087-2095.
[25] 马明旭, 马宏, 宋华伟. 基于YOLO-Pose的城市街景小目标行人姿态估计算法[J/OL]. 计算机工程: 1-11[2023-09-03]. https://doi.org/10.19678/j.issn.1000-3428.0067733.
MA M X, MA H, SONG H W. Pose estimation algorithm for small target pedestrians in urban street view based on YOLO-Pose[J/OL]. Computer Science: 1-11[2023-09-03]. https://doi.org/10.19678/j.issn.1000-3428.0067733.
[26] 冯爱棋, 吴小俊, 徐天阳. 融合注意力机制和上下文信息的实时交通标志检测算法[J]. 计算机科学与探索, 2023, 17(11): 2676-2688.
FENG A Q, WU X J, XU T Y. Real-time traffic sign detection algorithm combining attention mechanism and con-textual information[J]. Journal of Frontiers of Computer Science and Technology , 2023, 17(11): 2676-2688.
[27] ZHENG Z H, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8574-8586.
[28] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[29] 甄然, 刘雨涵, 孟凡华, 等. 基于改进YOLO v7的低空飞行物目标检测方法[J/OL]. 无线电工程: 1-14[2023-09-03]. http://kns.cnki.net.ez.zust.edu.cn/kcms/detail/13.1097.TN.
20230828.1418.002.html.
ZHEN R, LIU Y H, MENG F H, et al. Low altitude flying target detection method based on improved YOLOv 7[J/OL]. Radio Engineering: 1-14[2023-09-03]. http: //kns.cnki.net.ez.zust.edu.cn/kcms/detail/13.1097.TN.20230828.1418.002.html.
[30] DU D, ZHU P, WEN L, et al. Visdrone-det2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[31] CHENG Y, ZHU J, JIANG M, et al. Flow: a dataset and benchmark for floating waste detection in inland waters[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10953-10962.
[32] TERVEN J, CORDOVA-ESPARZA D. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[J]. arXiv:2304.00501, 2023.
[33] LIANG S, WU H, ZHEN L, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360. |