[1] 曹亚明, 肖奇, 杨震. 仿真图像作为模板的遥感影像小目标检测方法[J]. 计算机工程与应用, 2022, 58(17): 111-119.
CAO Y M, XIAO Q, YANG Z. Remote sensing image small target detection method using simulation image as template[J]. Computer Engineering and Applications, 2022, 58(17): 111-119.
[2] 王斌, 李靖, 赵康, 等. 面向火焰快速检测的轻量化深度网络研究[J]. 计算机工程与应用, 2022, 58(17): 256-262.
WANG B, LI J, ZHAO K, et al. Research on lightweight depth network for rapid flame detection[J]. Computer Engineering and Applications, 2022, 58(17): 256-262.
[3] 何丽, 张红艳, 房婉琳. 融合多尺度边界特征的显著实例分割[J]. 计算机科学与探索, 2022, 16(8): 1865-1876.
HE L, ZHANG H Y, FANG W L. Salient instance segmentation via multiscale boundary characteristic network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1865-1876.
[4] 任宁, 付岩, 吴艳霞, 等. 深度学习应用于目标检测中失衡问题研究综述[J]. 计算机科学与探索, 2022, 16(9): 1933-1953.
REN N, FU Y, WU Y X, et al. Review of research on imbalance problem in deep learning applied to object detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1933-1953.
[5] 余颖舜, 李成瑶, 潘长开. 行车障碍识别算法的精度提升方法[J]. 汽车与新动力, 2022, 5(6): 48-50.
YU Y S, LI C Y, PAN C K. The accuracy improvement method of driving obstacle recognition algorithm[J]. Automobile and New Powertrain, 2022, 5(6): 48-50.
[6] 王波, 冯旭鹏, 刘利军, 等. 基于改进YOLO算法的肺部CT图像中结节检测研究[J]. 北京生物医学工程, 2020, 39(6): 615-621.
WANG B, FENG X P, LIU L J, et al. Study on nodule detection in lung CT images based on improved YOLO algorithm[J]. Beijing Biomedical Engineering, 2020, 39(6): 615-621.
[7] 宋晓茹, 刘康, 高嵩, 等. 复杂战场环境下改进YOLOv5军事目标识别算法研究[J/OL]. 兵工学报: 1-15[2023-03-23]. http://kns.cnki.net/kcms/detail/11.2176.TJ.20221226.1804.
003.html.
SONG X R, LIU K, GAO S, et al. Research on improved YOLOv5 military target recognition algorithm in complex battlefield environment[J/OL]. Acta Armamentarii: 1-15[2023-03?23].http://kns.cnki.net/kcms/detail/11.2176.TJ.20221226.
1804.003.html.
[8] 茅智慧, 朱佳利, 吴鑫, 等. 基于 YOLO 的自动驾驶目标检测研究综述[J]. 计算机工程与应用, 2022, 58(15): 68-77.
MAO Z H, ZHU J L, WU X, et al. Review of YOLO based target detection for autonomous driving[J]. Computer Engineering and Applications, 2022, 58(15): 68-77.
[9] 董刚, 谢维成, 黄小龙, 等. 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59(11): 16-27. .
DONG G, XIE W C, HUANG X L, et al. Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
[10] 刘谱, 张兴会, 张志利, 等. 从RCNN到YOLO的目标检测综述[C]//第十六届全国信号和智能信息处理与应用学术会议论文集, 2022: 16-23.
LIU P, ZHANG X H, ZHANG Z L, et al. Review of target detection ranging from RCNN to YOLO[C]//Proceedings of the 16th National Conference on Signal and Intelligent Information Processing and Application, 2022: 16-23.
[11] 张艳, 张明路, 吕晓玲, 等. 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58(15): 1-17.
ZHANG Y, ZHANG M L, LYU X L, et al. Review of research on small target detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(15): 1-17.
[12] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[13] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[14] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015.
[15] LYU Z, JIN H, ZHEN T, et al. Small object recognition algorithm of grain pests based on SSD feature fusion[J]. IEEE Access, 2021, 9: 43202-43213.
[16] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real?time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[18] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[19] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[20] BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934, 2020.
[21] ZHAN W, SUN C, WANG M, et al. An improved Yolov5 real-time detection method for small objects captured by UAV[J]. Soft Computing, 2022, 26(1): 361-373.
[22] SONG Z, ZHANG Y, LIU Y, et al. MSFYOLO: feature fusion based detection for small objects[J]. IEEE Latin America Transactions, 2022, 20(5): 823-830.
[23] CHEN C, ZHANG Y, LV Q, et al. RRnet: a hybrid detector for object detection in drone-captured images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2019: 100-108.
[24] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7380-7399.
[25] 周华平, 郭伟. 改进YOLOv5网络在遥感图像目标检测中的应用[J]. 遥感信息, 2022, 37(5): 23-30.
ZHOU H P, GUO W. Improved YOLOv5 network in application of remote sensing image object detection[J]. Remote Sensing Information, 2022, 37(5): 23-30.
[26] 李惠惠, 范军芳, 陈启丽. 改进YOLOv5的遥感图像目标检测[J]. 弹箭与制导学报, 2022, 42(4): 17-23.
LI H H, FAN J F, CHEN Q L. Improved YOLOv5 remote sensing image target detection[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2022, 42(4): 17-23.
[27] XI D, QIN Y, WANG S. YDRSNet: an integrated Yolov5-Deeplabv3+real-time segmentation network for gear pitting measurement[J]. Journal of Intelligent Manufacturing, 2021, 34(4): 1585-1599.
[28] GONG H, MU T, LI Q, et al. Swin-transformer-enabled yolov5 with attention mechanism for small object detection on satellite images[J]. Remote Sensing, 2022, 14: 2861.
[29] LIU Y, SUN P, WERGELES N M, et al. A survey and performance evaluation of deep learning methods for small object detection[J]. Expert Syst Appl, 2021, 172: 114602.
[30] CHEN G, WANG H, CHEN K, et al. A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52: 936-953.
[31] 张徐, 朱正为, 郭玉英, 等. 基于cosSTR-YOLOv7的多尺度遥感小目标检测[J/OL]. 电光与控制: 1-9[2023-07-03]. http://kns.cnki.net/kcms/detail/41.1227.tn.20230615.1017.
002.html.
ZHANG X, ZHU Z W, GUO Y Y, et al. Multi-scale remote sensing small target detection based on cosSTR-YOLOv7[J/OL]. Electronics Optics & Control: 1-9 [2023-07-03]. http://kns.cnki.net/kcms/detail/41.1227.tn.20230615.1017.
002.html.
[32] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[33] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[34] WANG C Y, BOCHKOVSKIY A, LIAO H Y. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
[35] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[36] CHANDIO A, GUI G, KUMAR T, et al. Precise single-stage detector[J]. arXiv:2210.04252, 2022. |