Road Object Detection Method for Complex Road Scenes
SHENG Boying, HOU Jin, LI Jiaxin, DANG Hui
1.School of Computer and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China
2.Laboratory of Intelligent Perception and Smart Operation & Maintenance, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
3.National Engineering Laboratory of Integrated Transportation Big Data Application Technology, Southwest Jiaotong University, Chengdu 611756, China
[1] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2014:580-587.
[2] GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:1440-1448.
[3] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016:39(6):1137-1149.
[4] HE K,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:2961-2969.
[5] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:779-788.
[6] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//IEEE Conference on Computer Vision & Pattern Recognition,2017:6517-6525.
[7] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018.
[8] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[9] LI C,LI L,JIANG H,et al.YOLOv6:a single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022.
[10] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv:2207.02696,2022.
[11] GE Z,LIU S,WANG F,et al.Yolox:exceeding yolo series in 2021[J].arXiv:2107:08430,2021.
[12] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision.Amsterdam:Springer,2016:21-37.
[13] HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
[14] 王鹏飞,黄汉明,王梦琪.改进YOLOv5的复杂道路目标检测算法[J].计算机工程与应用,2022,58(17):81-92.
WANG P F,HUANG H M,WANG M Q.Complex road target detection algorithm based on improved YOLOv5[J].Computer Engineering and Applications,2022,58(17):81-92.
[15] WOO S,PARK J,LEE J Y,et al.CBAM:convolution block attention module[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:3-19.
[16] 冉险生,苏山杰,陈俊豪,等.自适应特征融合的复杂道路场景目标检测算法[J/OL].计算机工程与应用:1-14[2023-01-18].http://kns.cnki.net/kcms/detail/11.2127.TP.20221014.
1639.002.html.
RAN X S,SU S J,CHEN J H,et al.Object detection algorithm for complex road scenes based on adaptive feature fusion[J/OL].Computer Engineering and Applications:1-14[2023-01-18].http://kns.cnki.net/kcms/detail/11.2127.TP.20221014.1639.002.html.
[17] 宋谱怡,陈红,苟浩波.改进YOLOv5s的无人机目标检测算法[J].计算机工程与应用,2023,59(1):108-116.
SONG P Y,CHEN H,GOU H B.Improved UAV object detection algorithm for YOLOv5s[J].Computer Engineering and Applications,2023,59(1):108-116.
[18] 代牮,赵旭,李连鹏,等.基于改进YOLOv5的复杂背景红外弱小目标检测算法[J].红外技术,2022,44(5):504-512.
DAI J,ZHAO X,LI L P,et al.Improved YOLOv5-based infrared dim-small target detection under complex background[J].Infrared Technology,2022,44(5):504-512.
[19] 李永上,马荣贵,张美月.改进YOLOv5s+DeepSORT的监控视频车流量统计[J].计算机工程与应用,2022,58(5):271-279.
LI Y S,MA R G,ZHANG M Y.Traffic monitoring video volume statistics method based on improved YOLOv5s+DeepSORT[J].Computer Engineering and Applications,2022,58(5):271-279.
[20] 汪雷,黄剑,段涛,等.基于气压肌动图和改进神经模糊推理系统的手势识别研究[J].自动化学报,2022,48(5):1220-1233.
WANG L,HUANG J,DUAN T,et al.Research on gesture recognition based on pressure-based mechanomyogram and improved neural fuzzy inference system[J].Acta Automatica Siniva,2022,48(5):1220-1233.
[21] LIN T Y,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125.
[22] LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:8759-8768.
[23] QIAO S,CHEN L C,YUILLE A.Detectors:detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:10213-10224.
[24] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848.
[25] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR),2017:1251-1258.
[26] WANG Q,WU B,ZHU P,et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020.
[27] HAN K,WANG Y,TIAN Q,et al.Ghostnet:more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1580-1589.
[28] GEIGER A,LENZ P,STILLER C,et al.Vision meets robotics:the kitti dataset[J].The International Journal of Robotics Research,2013,32(11):1231-1237.
[29] CAO Y,HE Z,WANG L,et al.VisDrone-DET2021:the vision meets drone object detection challenge results[C]//IEEE International Conference on Computer Vision,Montreal,Canada,2021:2847-2854.
[30] ZHANG W,CONG M Y,WANG L P.Algorithms for optical weak small targets detection and tracking:review[C]//Proceedings of the 2003 International Conference on Neural Networks and Signal Processing,2003:643-647.
[31] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141.
[32] SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-CAM:visual explanations from deep networks via gradient-based localization[C]//Proceeding of 2017 IEEE International Conference on Computer Vision(ICCV).Venice,Italy:IEEE,2017:618-626.