[1] 张菁, 吴鑫嘉, 赵晓蕾, 等. 全局关系注意力引导场景约束的高分辨率遥感影像目标检测[J]. 电子与信息学报, 2022, 44(8): 2924-2931.
ZHANG J, WU X J, ZHAO X L, et al. Scene constrained object detection method in high-resolution remote sensing images by relation-aware global attention[J]. Journal of Electronics & Information Technology, 2022, 44(8): 2924-2931.
[2] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
[4] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[5] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: singleshot MultiBox detector[C]//The 14th European Conference on Computer Vision. Amsterdam: IEEE, 2016: 21-37.
[8] 刘涛, 丁雪妍, 张冰冰, 等. 改进YOLOv5的遥感图像检测方法[J]. 计算机工程与应用, 2023, 59(10): 253-261.
LIU T, DING X Y, ZHANG B B, et al. Improved YOLOv5 for remote sensing image detection[J]. Computer Engineering and Applications, 2023, 59(10): 253-261.
[9] REN Y, ZHU C, XIAO S. Small object detection in optical remote sensing images via modified faster R-CNN[J]. Applied Sciences, 2018, 8(5): 813.
[10] ZHANG W, WANG S, THACHAN S, et al. Deconv R-CNN for small object detection on remote sensing images[C]//2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia: IEEE, 2018: 2483-2486.
[11] CUI Z, WANG X, LIU N, et al. Ship detection in large-scale SAR images via spatial shuffle-group enhance attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1): 379-391.
[12] 王浩桐, 郭中华. 锚框策略匹配的SSD飞机遥感图像目标检测[J]. 计算机科学与探索, 2022, 16(11): 2596-2608.
WANG H T, GUO Z H. Target detection of SSD aircraft remote sensing images based on anchor frame strategy matching[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2596-2608.
[13] ULTRALYTICS. YOLOv5[EB/OL]. (2020-06-09)[2023-04-20]. https://github.com/ultralytics/YOLOv5, 2021.
[14] WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 390-391.
[15] 赵振兵, 王帆帆, 刘良帅, 等. 基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J]. 电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Transmission line image fitting detection method based on attention feature fusion YOLOv5 model[J]. Electrical Measurement & Instrumentation, 2023, 60(3): 145-152.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464-7475.
[17] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021.
[18] ULTRALYTICS. YOLOv8[EB/OL]. (2023-01-06)[2023-04-20]. https://github.com/ultralytics/ultralytics, 2023.
[19] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[20] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[21] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[22] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13708-13717.
[23] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2117-2125.
[24] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[25] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[26] LUO W, LI Y, URTASUN R, et al. Understanding the effective receptive field in deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2016.
[27] LYU C, ZHANG W, HUANG H, et al. RTMDet: an empirical study of designing real-time object detectors[J]. arXiv:2212.07784, 2022.
[28] ZHANG X, ZHOU X, LIN M, et al. Shufflenet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848-6856.
[29] CHENG G, HAN J. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11-28.
[30] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307.
[31] ZHANG T, ZHANG X, LI J, et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. |