[1] 曾志平, 申石文, 涂勤明, 等. 桥上双块式无砟轨道床板防裂优化设计研究[J]. 铁道工程学报, 2019, 36(7): 19-26.
ZENG Z P, SHEN S W, TU Q M, et al. Research on the anti-cracking optimization design of bed slabs for double-block ballastless track on bridge[J]. Journal of Railway Engineering Society, 2019, 36 (7): 19-26.
[2] GIRSHICK R. Fast R-CNN[C]//IEEE International Conference on Computer Vision (ICCV), Santiago Chile, December 7-13, 2015. New York: IEEE, 2015: 1440-1448.
[3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 779-788.
[4] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[5] BOCHKOVSKIY A, WANG C, LIAO H M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[6] 杨睿宁, 惠飞, 金鑫, 等. 改进YOLOv5s的复杂交通场景路侧目标检测算法[J]. 计算机工程与应用, 2023, 59(16): 159-169.
YANG R N, HUI F, JIN X, et al. Roadside target detection algorithm for complex traffic scene based on improved YOLOv5s[J]. Computer Engineering and Applications, 2023, 59(16): 159-169.
[7] 李冰涛, 李大海. 面向小目标的YOLOv5s安全帽佩戴检测[J]. 计算机系统应用, 2023, 32(8): 221-229.
LI B T, LI D H. YOLOv5s-based helmet wearing detection for small targets[J]. Computer Systems & Applications, 2023, 32(8): 221-229.
[8] 白堂博, 高嘉琳, 杨建伟, 等. 基于改进Mask R-CNN的铁路扣件状态检测方法研究[J]. 铁道建筑, 2021, 61(6): 140-143.
BAI T B, GAO J L, YANG J W, et al. Research on railway fastener status inspection method based on improved Mask R-CNN[J]. Railway Engineering, 2021, 61(6): 140-143.
[9] AYDIN I, AKIN E, KARAKOSE M. Defect classification based on deep features for railway tracks in sustainable transportation[J]. Applied Soft Computing, 2021, 111: 107706.
[10] 吴送英, 刘林芽, 张洪, 等. 基于迁移学习的铁路扣件缺陷形态检测算法研究[J]. 铁道科学与工程学报, 2022, 19(12): 3612-3624.
WU S Y, LIU L Y, ZHANG H, et al. Research on defect morphology detection algorithm of railway fastener based on Transfer learning[J]. Journal of Railway Science and Engineering, 2022, 19(12): 3612-3624.
[11] WAN Z J, CHEN S Q. Railway tracks defects detection based on deep convolution neural networks[M]//Artificial intelligence in China. Singapore: Springer, 2021: 119-129.
[12] 崔晓宁, 王起才, 李盛, 等. 基于YOLOv5的双块式轨枕裂缝智能识别[J]. 铁道学报, 2022, 44(4): 104-111.
CUI X N, WANG Q C, LI S, et al. Intelligent recognition of cracks in doubleblock sleeper based on YOLOv5[J]. Journal of the China Railways Society, 2022, 44(4): 104-111.
[13] 周淼森, 汤全武, 石甜甜, 等. 基于改进YOLOv5s的铁轨表面裂纹检测算法[J]. 液晶与显示, 2023, 38(5): 666-679.
ZHOU M S, TANG Q W, SHI T T, et al. Rail surface crack detection algorithm based on improved YOLOv5s[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(5): 666-679.
[14] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424, 2022.
[15] 陈一潇, 阿里甫·库尔班, 林文龙, 等. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245.
CHEN Y X, Alifu Kurban, LIN W L, et al. CA-YOLOv5 for congested pedestrian detection[J]. Computer Engineering and Applications, 2022, 58(9): 238-245.
[16] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456.
[17] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[18] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-876.
[19] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
[20] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[J]. arXiv:1807.11164, 2018.
[21] TAN M, PANG R, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[22] 李国豪, 袁一帆, 贲晛烨, 等. 采用时空注意力机制的人脸微表情识别[J]. 中国图象图形学报, 2020, 25(11): 2380-2390.
LI G H, YUAN Y F, BEN X Y, et al. Spatiotemporal attention network for microexpression recognition[J]. Journal of Image and Graphics, 2020, 25(11): 2380-2390.
[23] JIE H, LI S, GANG S. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
[24] WU W, ZHANG Y, WANG D, et al. SK-Net: deep learning on point cloud via end-to-end discovery of spatial keypoints[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 6422-6429.
[25] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020), Seattle, WA, USA, June 13-19 2020: 11531-11539.
[26] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[27] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154.
[28] HUANG Z, WANG X, HUANG L, et al. Ccnet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 603-612.
[29] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[30] 孙伟凯. 基于深度学习的高分辨率图像裂缝检测研究[D]. 济南: 山东大学, 2021.
SUN W K. Research on crack detection in high resolution image based on deep learning [D]. Jinan: Shandong University, 2021. |