[1] XU S, ZHANG M, SONG W, et al. A systematic review and analysis of deep learning-based underwater object detection[J]. Neurocomputing, 2023, 527: 204-232.
[2] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[3] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[4] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015, 28.
[5] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, Oct 11-14, 2016. Cham: Springer International Publishing, 2016: 21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] 叶赵兵, 段先华, 赵楚. 改进YOLOv3-SPP水下目标检测研究[J]. 计算机工程与应用, 2023, 59(6): 231-240.
YE Z B, DUAN X H, ZHAO C. Research on underwater target detection by Improved YOLOv3-SPP[J]. Computer Engineering and Applications, 2023, 59(6): 231-240.
[9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[10] LEI F, TANG F, LI S. Underwater target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2022, 10(3): 310.
[11] YAN J, ZHOU Z, ZHOU D, et al. Underwater object detection algorithm based on attention mechanism and cross-stage partial fast spatial pyramidal pooling[J]. Frontiers in Marine Science, 2022, 9: 1056300.
[12] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[13] SUN Y, ZHENG W, DU X, et al. Underwater small target detection based on YOLOX combined with MobileViT and double coordinate attention[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1178.
[14] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[15] WANG J, QI S, WANG C, et al. B-YOLOX-S: a lightweight method for underwater object detection based on data augmentation and multiscale feature fusion[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1764.
[16] WANG A, CHEN H, LIN Z, et al. RepViT: revisiting mobile CNN from ViT perspective[J]. arXiv:2307.09283, 2023.
[17] LI J, WEN Y, HE L. SCConv: spatial and channel reconstruction convolution for feature redundancy[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 6153-6162.
[18] ZHUANG J, QIN Z, YU H, et al. Task-specific context decoupling for object detection[J]. arXiv:2303.01047, 2023.
[19] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[20] PAN J, BULAT A, TAN F, et al. Edgevits: competing light-weight CNNs on mobile devices with vision transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 294-311.
[21] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368.
[22] 赵珊, 郑爱玲, 刘子路, 等. 通道分离双注意力机制的目标检测算法[J]. 计算机科学与探索, 2023, 17(5): 1112-1125.
ZHAO S, ZHENG A L, LIU Z L, et al. Object detection algorithm based on channel separation dual attention mechanism[J]. Journal of Frontiers of Computer Science & Technology, 2022, 8(3): 331-368.
[23] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[24] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[25] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7036-7045.
[26] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[27] 赵睿, 刘辉, 刘沛霖, 等. 基于改进YOLOv5s的安全帽检测算法[J]. 北京航空航天大学学报, 2023, 49(8): 2050-2061.
ZHAO R, LIU H, LIU P L, et al. Safety helmet detection algorithm based on improved YOLOv5s[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(8): 2050-2061.
[28] ZHAO Z, HE C, ZHAO G, et al. RA-YOLOX: re-parameterization align decoupled head and novel label assignment scheme based on YOLOX[J]. Pattern Recognition, 2023, 140: 109579.
[29] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9627-9636. |