[1] 刘勇. 多源卫星舰船目标观测信息融合技术研究[D]. 长沙: 国防科技大学, 2018.
LIU Y. Research on information fusion technology of multi-source satellite observation for ships[D]. Changsha: National University of Defense Technology, 2018.
[2] 安彧. 海战场舰船目标检测与识别研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
AN Y. Research on ship target detection and recognition in sea battlefield[D]. Harbin: Harbin Engineering University, 2015.
[3] 何友, 姚力波. 天基海洋目标信息感知与融合技术研究[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1530-1536.
HE Y, YAO L B. Space-based sea target information awareness and fusion[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1530-1536.
[4] 张帅勇, 刘美琴, 姚超, 等. 分级特征反馈融合的深度图像超分辨率重建[J]. 自动化学报, 2022, 48(4): 992-1003.
ZHANG S Y, LIU M Q, YAO C, et al. Hierarchical feature feedback network for depth super-resolution reconstruction[J]. Acta Automatica Sinica, 2022, 48(4): 992-1003.
[5] 杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(9): 1990-2010.
YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 1990-2010.
[6] 钟梦圆, 姜麟. 超分辨率图像重建算法综述[J]. 计算机科学与探索, 2022, 16(5): 972-990.
ZHONG M Y, JIANG L. Review of super-resolution image reconstruction algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 972-990.
[7] NOOR D F, LI Y, LI Z, et al. Multi-scale gradient image super-resolution for preserving SIFT key points in low-resolution images[J]. Signal Processing: Image Communication, 2019, 78: 236-245.
[8] SHERMEYER J, VAN ETTEN A. The effects of super-resolution on object detection performance in satellite imagery[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019.
[9] RUDER S. An overview of multi-task learning in deep neural networks[J]. arXiv:1706.05098, 2017.
[10] GONG T, LEE T, STEPHENSON C, et al. A comparison of loss weighting strategies for multi task learning in deep neural networks[J]. IEEE Access, 2019, 7: 141627-141632.
[11] VANDENHENDE S, GEORGOULIS S, VAN GANSBEKE W, et al. Multi-task learning for dense prediction tasks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3614-3633.
[12] WANG A, SINGH A, MICHAEL J, et al. GLUE: a multi-task benchmark and analysis platform for natural language understanding[J]. arXiv:1804.07461, 2018.
[13] DENG L, HINTON G, KINGSBURY B. New types of deep neural network learning for speech recognition and related applications: an overview[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013: 8599-8603.
[14] CUI Z, QI G J, GU L, et al. Multitask aet with orthogonal tangent regularity for dark object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2553-2562.
[15] DAI D, WANG Y, CHEN Y, et al. Is image super-resolution helpful for other vision tasks?[C]//Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 2016: 1-9.
[16] JI H, GAO Z, MEI T, et al. Vehicle detection in remote sensing images leveraging on simultaneous super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(4): 676-680.
[17] RABBI J, RAY N, SCHUBERT M, et al. Small-object detection in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J]. Remote Sensing, 2020, 12(9): 1432.
[18] HE S, ZOU H, WANG Y, et al. ShipSRDet: an end-to-end remote sensing ship detector using super-resolved feature representation[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium, 2021: 3541-3544.
[19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[20] SHI W, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016: 1874-1883.
[21] DI Y, JIANG Z, ZHANG H. A public dataset for fine-grained ship classification in optical remote sensing images[J]. Remote Sensing, 2021, 13(4): 747.
[22] YANG J, FU K, WU Y, et al. Mutual-feed learning for super-resolution and object detection in degraded aerial imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16.
[23] HE S, ZOU H, LI R, et al. Teacher-student network for low-quality remote sensing ship detection[C]//Proceedings of the 2021 IEEE International Conference on Computer Science, Artificial Intelligence and Electronic Engineering (CSAIEE), 2021: 283-287.
[24] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 136-144.
[25] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.
1556, 2014.
[26] CHEN Y, BAI Y, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5157-5166. |