[1] 黄立新. 基于深度学习的钣金组焊缺陷在线检测系统研究[D]. 成都:西华大学, 2022.
HUANG L X. Research on on-line defect detection system of sheet metal assembly welding based on deep learning[D]. Chengdu: Xihua University, 2022.
[2] 黄桦, 滕海渤, 刘义法, 等.机器视觉技术在汽车制造行业中的应用研究[J].汽车工艺与材料, 2022(6): 8-15.
HUANG H, TENG H B, LIU Y F, et al. Research on application of machine vision technologies in automobile manufacturing industry[J]. Automobile Technology & Material, 2022(6): 8-15.
[3] 赵朗月, 吴一全.基于机器视觉的表面缺陷检测方法研究进展[J].仪器仪表学报, 2022, 43(1): 198-219.
ZHAO L Y, WU Y Q. Research progress of surface defect detection methods based on machine vision[J]. Chinese Journal of Scientific Instrument, 2022, 43(1): 198-219.
[4] 肖庆阳, 方建儒, 张效民, 等.基于机器视觉的多螺孔检测系统[J].组合机床与自动化加工技术, 2021(1): 126-127.
XIAO Q Y, FANG J R, ZHANG X M, et al. Multi-threaded hole detection system based on machine vision[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(1): 126-127.
[5] 马晓锋, 王中任.基于引导滤波与神经网络算法的螺纹孔检测方法[J].制造技术与机床, 2022(1): 165-170.
MA X F, WANG Z R. Threaded hole detection method based on guided filtering and neural network algorithm[J]. Manufacturing Technology & Machine Tool, 2022(1): 165-170.
[6] 郭术义, 杨赛, 张鹏博.机器视觉在机械密封圈在线分拣中的应用[J].国外电子测量技术, 2021, 40(11): 103-110.
GUO S Y, YANG S, ZHANG P B. Application of machine vision in on-line sorting of mechanical sealing rings[J]. Foreign Electronic Measurement Technology, 2021, 40(11): 103-110.
[7] 樊绍胜, 杨迪, 邹德华, 等.输电线路螺栓紧固带电作业机器人的视觉搜索、识别与定位方法[J].电子测量与仪器学报, 2017, 31(9): 1514-1523.
FAN S S, YANG D, ZOU D H, et al. Vision-based tracing, recognition and positioning strategy for bolt tightening live working robot on power transmission line[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(9): 1514-1523.
[8] 王伏林, 冯显东, 冷细元, 等.基于深度学习与支持向量机的废旧产品锈蚀螺栓可拆卸性判别方法[J].现代制造工程, 2022(11): 122-129.
WANG F L, FENG X D, LENG X Y, et al. Method for dismountability judgement of rusted bolts of waste products based on deep learning and support vector machine[J]. Modern Manufacturing Engineering, 2022(11): 122-129.
[9] 杨桂华, 刘志毅, 王晓文.基于机器视觉多目标工件分类识别和定位研究[J].机床与液压, 2021, 49(11): 82-86.
YANG G H, LIU Z Y, WANG X W. Research on classification, recognition and localization of multi-objective workpiece based on machine vision[J]. Machine Tool & Hydraulics, 2021, 49(11): 82-86.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[11] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[12] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517-6525.
[13] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2767-2773.
[14] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, 2020.
[15] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1440-1448.
[16] REN S, HE K AND GIRSHICK R. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[17] HE K, GKIOXARI G, PIOTR D, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2980-2988.
[18] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[20] 肖扬, 周军.图像边缘检测综述[J].计算机工程与应用, 2023, 59(5): 40-54.
XIAO Y, ZHOU J. Overview of image edge detection[J]. Computer Engineering and Applications, 2023, 59(5): 40-54.
[21] 包从望, 胡才梦, 张彩红,等.基于改进Canny算子的齿轮缺陷检测边缘检测算法[J].组合机床与自动化加工技术, 2023(1): 83-86.
BAO C W, HU C M, ZHANG C H, et al. Edge detection algorithm of gear defect detection based on improved Canny operator[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2023(1): 83-86.
[22] 杜伟, 何毅斌, 吴林慧,等.融合改进形态学和LOG算子的齿轮边缘检测[J].武汉工程大学学报, 2021, 43(6): 675-680.
DU W, HE Y B, WU L H, et al. Gear edge detection by fusion of improved morphology and LOG operator[J]. Journal of Wuhan Institute of Technology, 2021, 43(6): 675-680.
[23] 贺强, 晏立.基于LOG和Canny算子的边缘检测算法[J].计算机工程, 2011, 37(3): 210-212.
HE Q, YAN L. Algorithm of edge detection based on LOG and Canny operator[J]. Computer Engineering, 2011, 37(3): 210-212.
[24] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722. |