[1] 王成良,吴艳娟. 高效中药关联规则发现算法研究及应用[J]. 计算机工程与应用, 2010, 46(34): 119-122.
WANG C L, WU Y J. Research and application of efficient association rule discovery algorithm of Chinese medicine[J]. Computer Engineering and Applications, 2010, 46(34): 119-122.
[2] 孟昱煜,王霄,闫光辉,等. 基于弹簧模型的重要节点排序算法[J]. 计算机工程与应用, 2022, 58(7): 77-86.
MENG Y Y, WANG X, YAN G H, et al. Ranking algorithms of vital nodes based on spring model[J]. Computer Engineering and Applications, 2022, 58(7): 77-86.
[3] 李玉蒙,林柳兵,李毅平. 基于数据挖掘的胃痛主要中医证型用药规律分析[J]. 西部中医药, 2022, 35(9): 85-90.
LI Y M, LIN L B, LI Y P. The medication law of the main TCM patterns of stomachache based on data mining[J]. Western Chinese Medicine, 2022, 35(9): 85-90.
[4] 王博龙,王彬,武亭宇,等. 基于数据挖掘和网络药理学探讨脑血栓用药规律及其机理[J]. 中南民族大学学报(自然科学版), 2023, 42(2): 166-173.
WANG B L, WANG B, WU T Y, et al. Medication rule and mechanism of cerebral thrombosis based on data mining and network pharmacology[J]. Journal of South-Central Minzu University (Natural Science Edition), 2023, 42(2): 166-173.
[5] 张胤颖. 基于复杂网络的中药方剂配伍规律数据挖掘研究及应用[D]. 银川:宁夏大学, 2019.
ZHANG Y Y. Research and application of data mining of Chinese medicine formula compatibility law based on complex network[D]. Yinchuan: Ningxia University, 2019.
[6] 施铮,王璐瑶,韦英杰,等. 基于数据挖掘与药效筛选的中医药干预抗结核药物所致肝损伤核心方药研究[J]. 南京中医药大学学报, 2023(2): 170-178.
SHI Z, WANG L Y, WEI Y J, et al. Study on core prescriptions and drugs of TCM against antituberculosis drug-induced liver injury based on data mining and efficacy screening[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2023(2): 170-178.
[7] 刘正. 基于MapReduce的中药数据网络化及挖掘[D]. 南京: 南京大学, 2012.
LIU Z. Discovering knowledge from traditional Chinese medicine data with complex network model based on MapReduce[D]. Nanjing: Nanjing University, 2012.
[8] 梁力伟,丁长松,黄辛迪,等. 基于重叠社区的“方-药”网络经方配伍规律分析[J]. 中草药, 2020, 51(2): 496-506.
LIANG L W, DING C S, HUANG X D, et al. Combination rule analysis of classic formulae in “formulae-herb” network based on overlapping community[J]. Chinese Traditional and Herbal Drugs, 2020, 51(2): 496-506.
[9] 孙道平,高原,谢隽,等. 一种用于中药方剂网络重叠社区发现的改进COPRA算法[J]. 南京大学学报 (自然科学版), 2013, 49(4): 483-490.
SUN D P, GAO Y, XIE J, et al. An improved COPRA algorithm applied to traditional Chinese medicine formula network[J]. Journal of Nanjing University (Natural Sciences), 2013, 49(4): 483-490.
[10] 李茹,孙正,王崇骏,等. 中药方剂药物属性的组网模型[J]. 智能系统学报, 2014, 9(2): 148-153.
LI R, SUN Z, WANG C J, et al. Network model of medicinal properties of the traditional Chinese medicine prescriptions[J]. CAAI Transactions on Intelligent Systems, 2014, 9(2): 148-153.
[11] 何前锋,周雪忠,周忠眉,等. 基于中药功效的聚类分析[J]. 中国中医药信息杂志, 2004(6): 561-562.
HE Q F, ZHOU X Z, ZHOU Z M, et al. Cluster analysis based on the efficacy of traditional Chinese medicine[J]. Chinese Journal of Information on TCM, 2004(6): 561-562.
[12] 丁维,蒋永光,宋姚屏,等. 基于中药药性和功效对清热解毒类药的聚类分析[J]. 广州中医药大学学报, 2007(1): 3-7.
DING W, JIANG Y G, SONG Y P, et al. Cluster analysis of detoxifying and detoxifying drugs based on the medicinal properties and efficacy of traditional Chinese medicines[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2007(1): 3-7.
[13] 邓文仕,张家立,赵犀,等. 基于关联规则和复杂系统熵聚类的腰椎间盘突出症外治方剂组方分析和新方发现[J]. 大众科技, 2020, 22(1): 65-68.
DENG W S, ZHANG J L, ZHAO X, et al. Analysis and new discovery of prescriptions for external treatment of lumbar disc herniation based on association rules and entropy clustering of complex systems[J]. Popular Science and Technology, 2020, 22(1): 65-68.
[14] 杨铭,田雨,陈佳蕾,等. 应用复杂系统熵网络方法发现中医方剂中的药对[J]. 药学服务与研究, 2013, 13(2): 89-92.
YANG M, TIAN Y, CHEN J L, et al. Application of complex systems entropy network for discovering traditional herb-pairs in traditional Chinese medicine prescriptions[J]. Pharmaceutical Care and Research, 2013, 13(2): 89-92.
[15] 王秋杰,尹心明. 链路预测算法在药物推荐中的应用研究[J]. 计算机与数字工程, 2019, 47(9): 2252-2256.
WANG Q J, YIN X M. Application of link prediction algorithm in drug recommendation[J]. Computer and Digital Engineering, 2019, 47(9): 2252-2256.
[16] 周雪忠,刘保延,王映辉,等. 复方药物配伍的复杂网络方法研究[J]. 中国中医药信息杂志, 2008, 15(11): 98-100.
ZHOU X Z, LIU B Y, WANG Y H, et al. A complex network approach to compound medicine compounding[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2008, 15(11): 98-100.
[17] 马宁,邢俊凤,宋宽. 复杂网络方法在中药复方数据挖掘中的应用[J]. 数字技术与应用, 2021, 39(12): 68-70.
MA N, XING J F, SONG K. Application of complex network method in data mining of traditional Chinese medicine compound formula[J]. Digital Technology and Application, 2021, 39(12): 68-70.
[18] 庞艳楣,林石思,梁平. 基于复杂网络的缺血性脑卒中恢复期中药组方规律研究[J]. 中国民族民间医药, 2022, 31(8): 8-14.
PANG Y M, LIN S S, LIANG P. Study on the prescription of traditional Chinese medicine in the recovery period of ischemic stroke based on complex network[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2022, 31(8): 8-14.
[19] ESTRADA E, RODRíGUEZ-VELáZQUEZ J A. Subgraph centrality and clustering in complex hyper-networks[J]. Physica A Statistical Mechanics & Its Applications, 2006, 364: 581-594.
[20] 雷蕾,胡枫. 大学生多重关系超网络特性分析[J]. 电子设计工程, 2020, 28(2): 1-7.
LEI L, HU F. Analysis of characteristics of university students’ multiple relationships hypernetwork[J]. Electronic Design Engineering, 2020, 28(2): 1-7.
[21] 马涛,郭进利. 基于加权超图的产学研合作申请专利超网络——以上海ICT产业为例[J]. 系统工程, 2018, 36(1): 140-152.
MA T, GUO J L. Industry-university-research cooperative hypernetwork for applying patent based on weighted hypergraph: a case of ICT industry from Shanghai[J]. Systems Engineering, 2018, 36(1): 140-152.
[22] 王高杰,冶忠林,赵海兴,等. 唐诗宋词中的超网络特性分析[J]. 计算机应用, 2021, 41(8): 2432-2439.
WANG G J, YE Z L, ZHAO H X, et al. Analysis of hypernetwork characteristics in Tang poems and Song lyrics[J]. Journal of Computer Applications, 2021, 41(8): 2432-2439.
[23] 周丽娜,常笑,胡枫. 利用邻接结构熵确定超网络关键节点[J]. 计算机工程与应用, 2022, 58(8): 76-82.
ZHOU L N, CHANG X, HU F. Using adjacent structure entropy to determine vital nodes of hypernetwork[J]. Computer Engineering and Applications, 2022, 58(8): 76-82.
[24] WAN H, MARIE-FRANCINE M, WALTER L, et al. Extracting relations from traditional Chinese medicine literature via heterogeneous entity networks[J]. Journal of the American Medical Informatics Association Jamia, 2016(2): 356.
[25] XU H Y, ZHANG Y Q, LIU Z M, et al. ETCM: an encyclopaedia of traditional Chinese medicine[J]. Nucleic Acids Research, 2019, 47(D1): 976-982.
[26] 胡枫,赵海兴,马秀娟. 一种超网络演化模型构建及特性分析[J]. 中国科学: 物理学 力学 天文学, 2013, 43(1): 16-22.
HU F, ZHAO H X, MA X J. An evolving hypernetwork model and its properties[J]. Scientia Sonica: Physica, Mechanica and Astronomical, 2013, 43(1): 16-22.
[27] SHEN A, GUO J, WU G, et al. The agglomeration phenomenon influence on the scaling law of the scientific collaboration system[J]. Chaos, Solitons and Fractals, 2018, 114: 461-467.
[28] 傅青苗. 社会化标签系统中用户标签使用特性研究[D]. 杭州: 浙江理工大学, 2014.
FU Q M. Research on user label usage characteristics in social labeling system[D]. Hangzhou: Zhejiang Sci-Tech University, 2014.
[29] 任晓龙,吕琳媛. 网络重要节点排序方法综述[J]. 科学通报, 2014, 59(13): 1175-1197.
REN X L, LV L Y. Review of ranking nodes in complex networks[J]. Chinese Science Bulletin, 2014, 59(13): 1175-1197.
[30] KITSAK M, GALLOS L K, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6: 888-893.
[31] BONACICH P. Factoring and weighting approaches to status scores and clique identification[J]. Journal of Mathematical Sociology, 1972, 2(1): 113-120.
[32] ZHANG Q, LI M, DU Y, et al. Local structure entropy of complex networks[J]. arXiv:1412.3910, 2014.
[33] 闫光辉,张萌,罗浩,等. 融合高阶信息的社交网络重要节点识别算法[J]. 通信学报, 2019, 40(10): 109-118.
YAN G H, ZHANG M, LUO H, et al. Identifying vital nodes algorithm in social networks fusing higher-order information[J]. Journal on Communications, 2019, 40(10): 109-118.
[34] CHIANG I. Agglomerative algorithm to discover semantics from unstructured big data[C]//Proceedings of the 2015 IEEE International Conference on Big Data, 2015: 1556-1563.
[35] GUO J L, ZHU X Y, SUO Q, et al. Non-uniform evolving hypergraphs and weighted evolving hypergraphs[J]. Scientific Reports, 2016, 6: 36648.
[36] LINTON C, FREEMAN. Centrality in social networks conceptual clarification[J]. Social Networks, 1978. |