[1] JAFARI M, SHOEIBI A, KHODATARS M, et al. Emotion recognition in EEG signals using deep learning methods: a review[J]. Computers in Biology and Medicine, 2023, 165: 107450.
[2] 刘颖, 袁莉, 祖铄迪, 等. 基于多模态生理数据的情感识别综述[J]. 电子科技大学学报, 2024, 53(5): 720-731.
LIU Y, YUAN L, ZU S D, et al. Emotion recognition based on multimodal physiological data: a survey[J]. Journal of University of Electronic Science and Technology of China, 2024, 53(5): 720-731.
[3] NAWAZ R, CHEAH K H, NISAR H, et al. Comparison of different feature extraction methods for EEG-based emotion recognition[J]. Biocybernetics and Biomedical Engineering, 2020, 40(3): 910-926.
[4] WANG J, WANG M. Review of the emotional feature extraction and classification using EEG signals[J]. Cognitive Robotics, 2021, 1: 29-40.
[5] LIU H, LOU T Y, ZHANG Y Z, et al. EEG-based multimodal emotion recognition: a machine learning perspective[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 4003729.
[6] PRABOWO D W, NUGROHO H A, SETIAWAN N A, et al. A systematic literature review of emotion recognition using EEG signals[J]. Cognitive Systems Research, 2023, 82: 101152.
[7] LIU H R, ZHANG Y, LI Y J, et al. Review on emotion recognition based on electroencephalography[J]. Frontiers in Computational Neuroscience, 2021, 15: 758212.
[8] 雪雯, 陈景霞, 胡凯蕾, 等. 基于EEG和面部视频的多模态连续情感识别[J]. 陕西科技大学学报, 2024, 42(1): 169-176.
XUE W, CHEN J X, HU K L, et al. Multimodal continuous emotion recognition based on EEG and facial video[J]. Journal of Shaanxi University of Science & Technology, 2024, 42(1): 169-176.
[9] LI Y, ZHENG W M, WANG L, et al. From regional to global brain: a novel hierarchical spatial-temporal neural network model for EEG emotion recognition[J]. IEEE Transactions on Affective Computing, 2022, 13(2): 568-578.
[10] 陈景霞, 胡修文, 唐喆喆, 等. 基于卷积联合适应网络的脑电信号情感识别[J]. 数据采集与处理, 2022, 37(4): 814-824.
CHEN J X, HU X W, TANG Z Z, et al. EEG emotion recognition based on convolutional joint adaptation network[J]. Journal of Data Acquisition and Processing, 2022, 37(4): 814-824.
[11] QIU X K, WANG S L, WANG R Q, et al. A multi-head residual connection GCN for EEG emotion recognition[J]. Computers in Biology and Medicine, 2023, 163: 107126.
[12] GAO Y, FU X L, OUYANG T X, et al. EEG-GCN: spatio-temporal and self-adaptive graph convolutional networks for single and multi-view EEG-based emotion recognition[J]. IEEE Signal Processing Letters, 2022, 29: 1574-1578.
[13] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2962-2971.
[14] 陈景霞, 唐喆喆, 林文涛, 等. 用于脑电数据增强和情绪识别的自注意力GAN[J]. 计算机工程与应用, 2023, 59(5): 160-168.
CHEN J X, TANG Z Z, LIN W T, et al. Self-attention GAN for EEG data augmentation and emotion recognition[J]. Computer Engineering and Applications, 2023, 59(5): 160-168.
[15] LI Y, CHEN J, LI F, et al. GMSS: graph-based multi-task self-supervised learning for EEG emotion recognition[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 2512-2525.
[16] LI G Q, CHEN N, NIU Y X, et al. MSLTE: multiple self-supervised learning tasks for enhancing EEG emotion recognition[J]. Journal of Neural Engineering, 2024, 21(2): 024003.
[17] CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7482-7491.
[18] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 3844-3852.
[19] ZHENG W L, LU B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Auto-nomous Mental Development, 2015, 7(3): 162-175.
[20] KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis; using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31.
[21] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |