
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 16-37.DOI: 10.3778/j.issn.1002-8331.2409-0384
平灿,李雷孝,刘东江,林浩,史建平
出版日期:2025-08-15
发布日期:2025-08-15
PING Can, LI Leixiao, LIU Dongjiang, LIN Hao, SHI Jianping
Online:2025-08-15
Published:2025-08-15
摘要: 随着智能监控和公共安全领域对车辆重识别技术需求日益增长,基于深度学习的方法凭借强大的图像处理能力逐渐成为研究的热点。传统的手工特征方法已无法满足现代车辆重识别面临的海量数据处理需求。梳理了当前基于深度学习的车辆重识别研究。介绍了车辆重识别的背景知识。根据数据输入源的不同,将现有方法分为表征学习和跨域学习两大类。表征学习关注全局特征和辅助特征的提取与融合,跨域学习则致力于处理不同领域之间的适应性问题。系统地总结了各类方法的关键技术,评述了它们的优势与局限性。最后探讨了未来研究的方向,提出通过多模态数据融合、无监督学习方法、大语言模型等先进技术来进一步提升车辆重识别的准确性和鲁棒性。
平灿, 李雷孝, 刘东江, 林浩, 史建平. 基于深度学习的车辆重识别研究进展[J]. 计算机工程与应用, 2025, 61(16): 16-37.
PING Can, LI Leixiao, LIU Dongjiang, LIN Hao, SHI Jianping. Research Progress of Vehicle Re-Identification Based on Deep Learning[J]. Computer Engineering and Applications, 2025, 61(16): 16-37.
| [1] ZAPLETAL D, HEROUT A. Vehicle re-identification for automatic video traffic surveillance[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2016: 1568-1574. [2] 张小瑞, 陈旋, 孙伟, 等. 基于深度学习的车辆再识别研究进展[J]. 计算机工程, 2020, 46(11): 1-11. ZHANG X R, CHEN X, SUN W, et al. Progress of vehicle re-identification research based on deep learning[J]. Computer Engineering, 2020, 46(11): 1-11. [3] 徐岩, 潘旭光, 郭晓燕, 等. 基于双重注意力与精确特征分布匹配的车辆重识别[J]. 计算机工程与应用, 2023, 59(23): 114-124. XU Y, PAN X G, GUO X Y, et al. Vehicle re-identification based on dual attention and exact feature distribution matching[J]. Computer Engineering and Applications, 2023, 59(23): 114-124. [4] BULAN O, KOZITSKY V, RAMESH P, et al. Segmentation- and annotation-free license plate recognition with deep localization and failure identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2351-2363. [5] GOU C, WANG K F, YAO Y J, et al. Vehicle license plate recognition based on extremal regions and restricted Boltzmann machines[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 1096-1107. [6] LIU X C, LIU W, MEI T, et al. PROVID: progressive and multimodal vehicle reidentification for large-scale urban surveillance[J]. IEEE Transactions on Multimedia, 2018, 20(3): 645-658. [7] LV K, SHENG H, XIONG Z, et al. Pose-based view synthesis for vehicles: a perspective aware method[J]. IEEE Transactions on Image Processing, 2020, 29: 5163-5174. [8] SHENG H, ZHANG Y, WU Y B, et al. Hypothesis testing based tracking with spatio-temporal joint interaction modeling[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(9): 2971-2983. [9] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1597-1607. [10] HOFFER E, AILON N. Deep metric learning using triplet network[C]//Proceedings of the 3rd International Workshop on Similarity-Based Pattern Recognition. Cham: Springer, 2015: 84-92. [11] LOU Y H, BAI Y, LIU J, et al. Embedding adversarial learning for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(8): 3794-3807. [12] HE S T, LUO H, WANG P C, et al. TransReID: transformer-based object re-identification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14993-15002. [13] JIN Y, LI C N, LI Y D, et al. Model latent views with multi-center metric learning for vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1919-1931. [14] SUN Y F, CHENG C M, ZHANG Y H, et al. Circle loss: a unified perspective of pair similarity optimization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6397-6406. [15] YUAN X, XU X, WANG Z, et al. Searching parameterized retrieval & verification loss for re-identification[J]. IEEE Journal of Selected Topics in Signal Processing, 2023, 17(3): 560-574. [16] CHEN C, LIU B, WAN S H, et al. An edge traffic flow detection scheme based on deep learning in an intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1840-1852. [17] DONG X D, YAN S, DUAN C Q. A lightweight vehicles detection network model based on YOLOv5[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104914. [18] SOCHOR J, ?PA?HEL J, HEROUT A. BoxCars: improving fine-grained recognition of vehicles using 3-D bounding boxes in traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 97-108. [19] YAN K, TIAN Y H, WANG Y W, et al. Exploiting multi-grain ranking constraints for precisely searching visually-similar vehicles[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 562-570. [20] LOU Y H, BAI Y, LIU J, et al. VERI-Wild: a large dataset and a new method for vehicle re-identification in the wild[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3230-3238. [21] KANAC? A, ZHU X T, GONG S G. Vehicle re-identification in context[C]//Proceedings of the 40th German Conference on Pattern Recognition. Cham: Springer, 2019: 377-390. [22] LIU H Y, TIAN Y H, WANG Y W, et al. Deep relative distance learning: tell the difference between similar vehicles[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 2167-2175. [23] SUN Z R, NIE X S, BI X P, et al. Detail enhancement-based vehicle re-identification with orientation-guided re-ranking[J]. Pattern Recognition, 2023, 137: 109304. [24] KAMENOU E, DEL RINCON J M, MILLER P, et al. Multi-level deep learning vehicle re-identification using ranked-based loss functions[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 9099-9106. [25] BAI Y, LOU Y H, DAI Y X, et al. Disentangled feature learning network for vehicle re-identification[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 474-480. [26] ZHENG Z D, RUAN T, WEI Y C, et al. VehicleNet: learning robust visual representation for vehicle re-identification[J]. IEEE Transactions on Multimedia, 2020, 23: 2683-2693. [27] ZHAO Y Z, SHEN C H, WANG H B, et al. Structural analysis of attributes for vehicle re-identification and retrieval[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(2): 723-734. [28] ZHU J Q, ZENG H Q, HUANG J C, et al. Vehicle re-identification using quadruple directional deep learning features[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 410-420. [29] ZHANG Y H, LIU D, ZHA Z J. Improving triplet-wise training of convolutional neural network for vehicle re-identification[C]//Proceedings of the 2017 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2017: 1386-1391. [30] CUI C, SANG N, GAO C X, et al. Vehicle re-identification by fusing multiple deep neural networks[C]//Proceedings of the 2017 7th International Conference on Image Processing Theory, Tools and Applications. Piscataway: IEEE, 2017: 1-6. [31] LI M, LIU J, ZHENG C, et al. Exploiting multi-view part-wise correlation via an efficient transformer for vehicle re-identification[J]. IEEE Transactions on Multimedia, 2021, 25: 919-929. [32] YANG L J, LUO P, LOY C C, et al. A large-scale car dataset for fine-grained categorization and verification[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3973-3981. [33] LI M, HUANG X M, ZHANG Z M. Self-supervised geometric features discovery via interpretable attention for vehicle re-identification and beyond[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 194-204. [34] KHORRAMSHAHI P, PERI N, CHEN J C, et al. The devil is in the details: self-supervised attention for vehicle re-identification[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 369-386. [35] LEE S, WOO T, LEE S H. Multi-attention-based soft partition network for vehicle re-identification[J]. Journal of Computational Design and Engineering, 2023, 10(2): 488-502. [36] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [37] GU F W, LU J, CAI C T. RPformer: a robust parallel transformer for visual tracking in complex scenes[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5011214. [38] SHEN F, XIE Y, ZHU J Q, et al. GiT: graph interactive transformer for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2023, 32: 1039-1051. [39] LIU S, HUANG S C, XU X Y, et al. Efficient visual tracking based on fuzzy inference for intelligent transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15795-15806. [40] HE Q Q, YANG Q J, XIE M H. HCTNet: a hybrid CNN-transformer network for breast ultrasound image segmentation[J]. Computers in Biology and Medicine, 2023, 155: 106629. [41] YAR H, KHAN Z A, ULLAH F U M, et al. A modified YOLOv5 architecture for efficient fire detection in smart cities[J]. Expert Systems with Applications, 2023, 231: 120465. [42] HE B, LI J, ZHAO Y F, et al. Part-regularized near-duplicate vehicle re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3992-4000. [43] ZHANG X Y, ZHANG R F, CAO J W, et al. Part-guided attention learning for vehicle instance retrieval[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(4): 3048-3060. [44] LIANG Y W, GAO Y F, SHEN Z Y. Transformer vehicle re-identification of intelligent transportation system under carbon neutral target[J]. Computers & Industrial Engineering, 2023, 185: 109619. [45] YANG J C, XING D, HU Z Q, et al. A two-branch network with pyramid-based local and spatial attention global feature learning for vehicle re-identification[J]. CAAI Transactions on Intelligence Technology, 2021, 6(1): 46-54. [46] WANG H B, PENG J J, JIANG G Q, et al. Discriminative feature and dictionary learning with part-aware model for vehicle re-identification[J]. Neurocomputing, 2021, 438: 55-62. [47] SHENG H, WANG S, CHEN H B, et al. Discriminative feature learning with co-occurrence attention network for vehicle ReID[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(5): 3510-3522. [48] CHEN X B, YU H Z, HU C, et al. Multi-branch feature learning network via global-local self-distillation for vehicle re-identification[J]. IEEE Transactions on Vehicular Technology, 2024, 73(9): 12415-12425. [49] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 8748-8763. [50] ZHOU K Y, YANG J K, LOY C C, et al. Conditional prompt learning for vision-language models[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16795-16804. [51] ZHOU K Y, YANG J K, LOY C C, et al. Learning to prompt for vision-language models[J]. International Journal of Computer Vision, 2022, 130(9): 2337-2348. [52] LI S Y, SUN L, LI Q L. CLIP-ReID: exploiting vision-language model for image re-identification without concrete text labels[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(1): 1405-1413. [53] DING L Q, LIU L, HUANG Y, et al. Text-to-image vehicle re-identification: multi-scale multi-view cross-modal alignment network and a unified benchmark[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(7): 7673-7686. [54] ZHANG H Y, KUANG Z Y, CHENG L D, et al. AIVR-Net: attribute-based invariant visual representation learning for vehicle re-identification[J]. Knowledge-Based Systems, 2024, 289: 111455. [55] TRAN L, YIN X, LIU X M. Disentangled representation learning GAN for pose-invariant face recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1283-1292. [56] LI H C, LI C L, ZHENG A H, et al. Attribute and state guided structural embedding network for vehicle re-identification[J]. IEEE Transactions on Image Processing, 2022, 31: 5949-5962. [57] YU Z, PEI J M, ZHU M P, et al. Multi-attribute adaptive aggregation transformer for vehicle re-identification[J]. Information Processing & Management, 2022, 59(2): 102868. [58] QUISPE R, LAN C L, ZENG W J, et al. AttributeNet: attribute enhanced vehicle re-identification[J]. Neurocomputing, 2021, 465: 84-92. [59] WANG H B, PENG J J, CHEN D Y, et al. Attribute-guided feature learning network for vehicle reidentification[J]. IEEE MultiMedia, 2020, 27(4): 112-121. [60] QIAN J J, JIANG W, LUO H, et al. Stripe-based and attribute-aware network: a two-branch deep model for vehicle re-identification[J]. Measurement Science and Technology, 2020, 31(9): 095401. [61] WANG Z D, TANG L M, LIU X H, et al. Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 379-387. [62] TU J Z, CHEN C L, HUANG X L, et al. DFR-ST: discriminative feature representation with spatio-temporal cues for vehicle re-identification[J]. Pattern Recognition, 2022, 131: 108887. [63] ZHANG Y Q, QIAN Q, WANG H S, et al. Graph convolution based efficient re-ranking for visual retrieval[J]. IEEE Transactions on Multimedia, 2023, 26: 1089-1101. [64] LIANG H, ZHU L, YU F R, et al. Blockchain-empowered edge intelligence for TACS obstacle detection: system design and performance optimization[J]. IEEE Transactions on Industrial Informatics, 2024, 20(1): 85-95. [65] WANG S, YANG D, SHENG H, et al. A blockchain-enabled distributed system for trustworthy and collaborative intelligent vehicle re-identification[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(2): 3271-3282. [66] SHEN Y T, XIAO T, LI H S, et al. Learning deep neural networks for vehicle Re-ID with visual-spatio-temporal path proposals[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 1918-1927. [67] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, 2017: 208-211. [68] SHEN F, ZHU J Q, ZHU X B, et al. Exploring spatial signi-ficance via hybrid pyramidal graph network for vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8793-8804. [69] HUANG C Q, JIANG F, HUANG Q H, et al. Dual-graph attention convolution network for 3-D point cloud classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4813-4825. [70] REN W K, JIN N D, OUYANG L. Phase space graph convolutional network for chaotic time series learning[J]. IEEE Transactions on Industrial Informatics, 2024, 20(5): 7576-7584. [71] LI H C, ZHENG A H, SUN L P, et al. Camera topology graph guided vehicle re-identification[J]. IEEE Transactions on Multimedia, 2023, 26: 1565-1577. [72] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers & distillation through attention[C]//Proceedings of the 38th International Conference on Machine Learning, 2021: 7358-7367. [73] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255. [74] LI Z W, ZHANG X Y, TIAN C, et al. TVG-ReID: transformer-based vehicle-graph re-identification[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(11): 4644-4652. [75] MENG D C, LI L, LIU X J, et al. Parsing-based view-aware embedding network for vehicle re-identification[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7101-7110. [76] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680. [77] RADFORD A, METZ L, CHINTALA S J A P A. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv:1511.06434, 2015. [78] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5967-5976. [79] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. [80] ZHOU Y, SHAO L. Cross-view GAN based vehicle generation for re-identification[C]//Proceedings of the British Machine Vision Conference 2017. London: British Machine Vision Association, 2017. [81] LIU R K, LIU W M, ZHENG Z X, et al. Anomaly-GAN: a data augmentation method for train surface anomaly detection[J]. Expert Systems with Applications, 2023, 228: 120284. [82] TRAN N T, TRAN V H, NGUYEN N B, et al. On data augmentation for GAN training[J]. IEEE Transactions on Image Processing, 2021, 30: 1882-1897. [83] LIU T T, LIU H, YANG B, et al. LDCNet: limb direction cues-aware network for flexible HPE in industrial behavioral biometrics systems[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8068-8078. [84] YU Y, LIU H T, FU Y Z, et al. Embedding pose information for multiview vehicle model recognition[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 5467-5480. [85] ZHANG F K, MA Y Q, YUAN G, et al. Multiview image generation for vehicle reidentification[J]. Applied Intelligence, 2021, 51(8): 5665-5682. [86] WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. [87] KISHORE R, ASLAM N, KOLEKAR M H. PATReID: pose apprise transformer network for vehicle re-identification[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(5): 3691-3702. [88] SONG X B, WANG P, ZHOU D F, et al. ApolloCar3D: a large 3D car instance understanding benchmark for auto-nomous driving[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5447-5457. [89] MENG D C, LI L, LIU X J, et al. Viewpoint alignment and discriminative parts enhancement in 3D space for vehicle ReID[J]. IEEE Transactions on Multimedia, 2022, 25: 2954-2965. [90] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014. [91] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [92] LIU S, DAVISON A J, JOHNS E. Self-supervised generalisation with meta auxiliary learning[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019: 1668-1678. [93] ZHENG A H, ZHU X P, MA Z Q, et al. Cross-directional consistency network with adaptive layer normalization for multi-spectral vehicle re-identification and a high-quality benchmark[J]. Information Fusion, 2023, 100: 101901. [94] TANG Z, NAPHADE M, LIU M Y, et al. CityFlow: a city-scale benchmark for multi-target multi-camera vehicle tracking and re-identification[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8789-8798. [95] PENG J J, WANG H B, XU F Q, et al. Cross domain knowledge learning with dual-branch adversarial network for vehicle re-identification[J]. Neurocomputing, 2020, 401: 133-144. [96] ZHOU Z L, LI Y J, LI J, et al. GAN-Siamese network for cross-domain vehicle re-identification in intelligent transport systems[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2779-2790. [97] WANG D, WANG Q, MIN W D, et al. SAM-driven MAE pre-training and background-aware meta-learning for un-supervised vehicle re-identification[J]. Computational Visual Media, 2024, 10(4): 771-789. [98] KUANG Z Y, HE C C, HUANG Y, et al. Joint image and feature levels disentanglement for generalizable vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15259-15273. [99] WEI R, GU J Y, HE S T, et al. Transformer-based domain-specific representation for unsupervised domain adaptive vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(3): 2935-2946. [100] ZHENG A H, SUN X, LI C L, et al. Viewpoint-aware progressive clustering for unsupervised vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 11422-11435. [101] WANG D, WANG Q, TU Z W, et al. Vision-language constraint graph representation learning for unsupervised vehicle re-identification[J]. Expert Systems with Applications, 2024, 255: 124495. [102] HE Z J, ZHAO H B, WANG J R, et al. Multi-level progressive learning for unsupervised vehicle re-identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(4): 4357-4371. [103] YU J, OH H, KIM M, et al. Weakly supervised contrastive learning for unsupervised vehicle reidentification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 15543-15553. [104] ZHANG X, LING Y N, LI K G, et al. Multimodality adaptive transformer and mutual learning for unsupervised domain adaptation vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(12): 20215-20226. [105] YANG M X, HUANG Z Y, PENG X. Robust object re-identification with coupled noisy labels[J]. International Journal of Computer Vision, 2024, 132(7): 2511-2529. [106] WANG C, FU H Z, YANG L, et al. Text co-detection in multi-view scene[J]. IEEE Transactions on Image Processing, 2020, 29: 4627-4642. [107] WANG S, SHENG H, ZHANG Y, et al. Blockchain-empowered distributed multicamera multitarget tracking in edge computing[J]. IEEE Transactions on Industrial Informatics, 2024, 20(1): 369-379. [108] HASAN M, MOHAN S B, SHIMIZU T, et al. Securing vehicle-to-everything (V2X) communication platforms[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 693-713. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 杨书新, 丁祺伟. 基于局部和全局特征聚合的虚假新闻检测方法[J]. 计算机工程与应用, 2025, 61(9): 139-147. |
| [4] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [10] | 李彬, 李生林. 改进YOLOv11n的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(7): 96-104. |
| [11] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [12] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [13] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [14] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [15] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||