计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 1-15.DOI: 10.3778/j.issn.1002-8331.2410-0308

• 热点与综述 • 上一篇    下一篇

面向单目标追踪的对抗攻击技术综述

陆正之,黄希宸,彭勃   

  1. 1.国防科技大学 试验训练基地,西安 710106 
    2.国防科技大学 电子科学学院,长沙 410073
  • 出版日期:2025-08-15 发布日期:2025-08-15

Survey of Adversarial Attacks for Single Object Tracking

LU Zhengzhi, HUANG Xichen, PENG Bo   

  1. 1.Test Center, National University of Defense Technology, Xi’an 710106, China
    2.College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • Online:2025-08-15 Published:2025-08-15

摘要: 单目标追踪是计算机视觉中的关键任务之一。随着人工智能技术的发展,基于深度学习的追踪方法已经成为单目标追踪的主流,显著提升了追踪的精度和可用性。然而深度学习方法易受到对抗攻击威胁,攻击者能够诱使深度追踪模型产生错误的追踪结果,严重影响追踪的鲁棒性和安全性。综述了近年来单目标追踪领域对抗性攻击技术的研究进展,揭示了深度学习追踪模型所面临的潜在安全风险,并分析了该领域所面临的挑战和难题。依据攻击方法是否与视频追踪的在线特性相适应,对现有的单目标追踪对抗性攻击技术进行了分类总结,阐述了基本原理、特征以及代表性工作。最后从构建安全可靠的追踪模型和面向实际应用的追踪攻击等视角,对追踪对抗技术的未来发展趋势进行了展望,探讨了当前追踪攻击研究中的关键问题,包括追踪对抗防御、多模态追踪攻击、物理可实现追踪攻击及非合作追踪攻击等,以推动该领域创新与进步。

关键词: 单目标追踪(SOT), 对抗攻击, 深度学习, 人工智能

Abstract: Single object tracking (SOT) is one of the key tasks in computer vision. With the advancement of artificial intelligence, tracking methods based on deep learning have become the mainstream approach for SOT, significantly improving the performance of tracking systems. However, deep learning methods are vulnerable to adversarial attacks, where attackers induce tracking errors in deep tracking models, severely impacting the precision and robustness of tracking. This paper reviews the development of adversarial attack techniques for SOT in recent years, uncovering the security threats and analyzing the challenges encountered in adversarial attack techniques for SOT. Furthermore, this paper categorizes the existing adversarial attack techniques for SOT based on whether the attack methods align with the online characteristics of video tracking, summarizing their fundamental principles, characteristics, and representative works. Finally, from the perspectives of constructing secure and reliable tracking models and targeting practical applications of tracking attacks, this paper provides an outlook on the future development trends of tracking adversarial technologies. It delves into the pivotal issues in current research on tracking attacks, encompassing tracking adversarial defense, multimodal tracking attacks, physically realizable tracking attacks, and non-cooperative attacks, with the aim of fostering innovation and advancement in this field.

Key words: single object tracking (SOT), adversarial attacks, deep learning, artificial intelligence