
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (16): 1-15.DOI: 10.3778/j.issn.1002-8331.2410-0308
陆正之,黄希宸,彭勃
出版日期:2025-08-15
发布日期:2025-08-15
LU Zhengzhi, HUANG Xichen, PENG Bo
Online:2025-08-15
Published:2025-08-15
摘要: 单目标追踪是计算机视觉中的关键任务之一。随着人工智能技术的发展,基于深度学习的追踪方法已经成为单目标追踪的主流,显著提升了追踪的精度和可用性。然而深度学习方法易受到对抗攻击威胁,攻击者能够诱使深度追踪模型产生错误的追踪结果,严重影响追踪的鲁棒性和安全性。综述了近年来单目标追踪领域对抗性攻击技术的研究进展,揭示了深度学习追踪模型所面临的潜在安全风险,并分析了该领域所面临的挑战和难题。依据攻击方法是否与视频追踪的在线特性相适应,对现有的单目标追踪对抗性攻击技术进行了分类总结,阐述了基本原理、特征以及代表性工作。最后从构建安全可靠的追踪模型和面向实际应用的追踪攻击等视角,对追踪对抗技术的未来发展趋势进行了展望,探讨了当前追踪攻击研究中的关键问题,包括追踪对抗防御、多模态追踪攻击、物理可实现追踪攻击及非合作追踪攻击等,以推动该领域创新与进步。
陆正之, 黄希宸, 彭勃. 面向单目标追踪的对抗攻击技术综述[J]. 计算机工程与应用, 2025, 61(16): 1-15.
LU Zhengzhi, HUANG Xichen, PENG Bo. Survey of Adversarial Attacks for Single Object Tracking[J]. Computer Engineering and Applications, 2025, 61(16): 1-15.
| [1] ZHANG Y C, WANG T, LIU K X, et al. Recent advances of single-object tracking methods: a brief survey[J]. Neurocomputing, 2021, 455: 1-11. [2] 韩瑞泽, 冯伟, 郭青, 等. 视频单目标跟踪研究进展综述[J]. 计算机学报, 2022, 45(9): 1877-1907. HAN R Z, FENG W, GUO Q, et al. Single object tracking research: a survey[J]. Chinese Journal of Computers, 2022, 45(9): 1877-1907. [3] LEON F, GAVRILESCU M. A review of tracking, prediction and decision making methods for autonomous driving[J]. arXiv:1909.07707, 2019. [4] 钟乐海, 李礁, 包晓安, 等. 公共安全智能监控平台关键技术[J]. 兵工自动化, 2021, 40(11): 60-65. ZHONG L H, LI J, BAO X A, et al. Key technologies of public security intelligent monitoring platform[J]. Ordnance Industry Automation, 2021, 40(11): 60-65. [5] BUDIHARTO W, ANDREAS V, SUROSO J S, et al. Development of tank-based military robot and object tracker[C]//Proceedings of the 2019 4th Asia-Pacific Conference on Intelligent Robot Systems. Piscataway: IEEE, 2019: 221-224. [6] CHAN Y T, HU A G C, PLANT J B. A Kalman filter based tracking scheme with input estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1979, 15(2): 237-244. [7] MALIK N A, DRACOS T, PAPANTONIOU D A. Particle tracking velocimetry in three-dimensional flows[J]. Experiments in Fluids, 1993, 15(4): 279-294. [8] 肖军, 朱世鹏, 黄杭, 等. 基于光流法的运动目标检测与跟踪算法[J]. 东北大学学报 (自然科学版), 2016, 37(6): 770-774. XIAO J, ZHU S P, HUANG H, et al. Object detecting and tracking algorithm based on optical flow[J]. Journal of Northeastern University (Natural Science), 2016, 37(6): 770-774. [9] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. [10] KUMAR A, VOHRA R, JAIN R, et al. Correlation filter based single object tracking: a review[J]. Information Fusion, 2024, 112: 102562. [11] 张刚, 郭琦. 基于深度学习的目标追踪方法综述[J]. 长江信息通信, 2023, 36(10): 17-21. ZHANG G, GUO Q. Survey on target tracking methods based on deep learning[J]. Changjiang Information & Communications, 2023, 36(10): 17-21. [12] AKHTAR N, MIAN A, KARDAN N, et al. Advances in adversarial attacks and defenses in computer vision: a survey[J]. IEEE Access, 2021, 9: 155161-155196. [13] 纪守领, 杜天宇, 邓水光, 等. 深度学习模型鲁棒性研究综述[J]. 计算机学报, 2022, 45(1): 190-206. JI S L, DU T Y, DENG S G, et al. Robustness certification research on deep learning models: a survey[J]. Chinese Journal of Computers, 2022, 45(1): 190-206. [14] LU Z Z, WANG H, CHANG Z Y, et al. Hard no-box adversarial attack on skeleton-based human action recognition with skeleton-motion-informed gradient[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 4574-4583. [15] GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//Proceedings of the 2015 International Conference on Learning Representations, 2015. [16] ZHANG Y, TI?O P, LEONARDIS A, et al. A survey on neural network interpretability[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2021, 5(5): 726-742. [17] GILPIN L H, BAU D, YUAN B Z, et al. Explaining explanations: an overview of interpretability of machine learning[C]//Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics. Piscataway: IEEE, 2018: 80-89. [18] LIANG S Y, WEI X X, YAO S Y, et al. Efficient adversarial attacks for visual object tracking[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 34-50. [19] GUO Q, XIE X F, JUEFEI-XU F, et al. SPARK: spatial-aware online incremental attack against visual tracking[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 202-219. [20] CHEN X S, YAN X Y, ZHENG F, et al. One-shot adversarial attacks on visual tracking with dual attention[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10173-10182. [21] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]//Advances in Neural Information Processing Systems 29, 2016: 3637-3645. [22] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4293-4302. [23] NAM H, BAEK M, HAN B. Modeling and propagating CNNs in a tree structure for visual tracking[J]. arXiv:1608. 07242, 2016. [24] LI H X, LI Y, PORIKLI F. DeepTrack: learning discriminative feature representations online for robust visual tracking[J]. IEEE Transactions on Image Processing, 2016, 25(4): 1834-1848. [25] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 850-865. [26] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4277-4286. [27] ZHU Z, WANG Q, LI B, et al. Distractor-aware Siamese networks for visual object tracking[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 103-119. [28] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4655-4664. [29] BHAT G, DANELLJAN M, VAN GOOL L, et al. Learning discriminative model prediction for tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6181-6190. [30] DANELLJAN M, VAN GOOL L, TIMOFTE R. Probabilistic regression for visual tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 7181-7190. [31] CHEN X, YAN B, ZHU J W, et al. Transformer tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8122-8131. [32] YAN B, PENG H W, FU J L, et al. Learning spatio-temporal transformer for visual tracking[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10428-10437. [33] MA F, SHOU M Z, ZHU L C, et al. Unified transformer tracker for object tracking[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8771-8780. [34] GUO D Y, SHAO Y Y, CUI Y, et al. Graph attention tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9538-9547. [35] KIM H I, PARK R H. Residual LSTM attention network for object tracking[J]. IEEE Signal Processing Letters, 2018, 25(7): 1029-1033. [36] YUN S, CHOI J, YOO Y, et al. Action-decision networks for visual tracking with deep reinforcement learning[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1349-1358. [37] LU Z Z, YANG G A, LIU D Y, et al. Selective part-based correlation filter tracking algorithm with reinforcement learning[J]. IET Image Processing, 2022, 16(4): 1208-1226. [38] MELEKHOV I, KANNALA J, RAHTU E. Siamese network features for image matching[C]//Proceedings of the 2016 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016: 378-383. [39] HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 87-110. [40] THYS S, VAN RANST W, GOEDEME T. Fooling automated surveillance cameras: adversarial patches to attack person detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 49-55. [41] MORRIS J X, LIFLAND E, YOO J Y, et al. TextAttack: a framework for adversarial attacks, data augmentation, and adversarial training in NLP[J]. arXiv:2005.05909, 2020. [42] CHEN X S, FU C M, ZHENG F, et al. A unified multi-scenario attacking network for visual object tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1097-1104. [43] BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3464-3468. [44] NAKKA K K, SALZMANN M. Universal, transferable adversarial perturbations for visual object trackers[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 413-429. [45] WU Y, LIM J, YANG M H. Online object tracking: a benchmark[C]//Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 2411-2418. [46] KRISTAN M, MATAS J, LEONARDIS A, et al. The ninth visual object tracking VOT2021 challenge results[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2711-2738. [47] FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5369-5378. [48] WU W B, SU Y X, CHEN X X, et al. Boosting the transferability of adversarial samples via attention[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1158-1167. [49] WANG X S, ZHANG Z L, ZHANG J P. Structure invariant transformation for better adversarial transferability[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 4584-4596. [50] WANG K Y, HE X R, WANG W X, et al. Boosting adversarial transferability by block shuffle and rotation[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 24336-24346. [51] CHEN P-Y, ZHANG H, SHARMA Y, et al. ZOO: zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2017: 15-26. [52] CARLINI N, WAGNER D. Towards evaluating the robustness of neural networks[C]//Proceedings of the 2017 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2017: 39-57. [53] PENG B W, PENG B, XIA J Y, et al. Towards assessing the synthetic-to-measured adversarial vulnerability of SAR ATR[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 214: 119-134. [54] WANG L, YOON K J. PSAT-GAN: efficient adversarial attacks against holistic scene understanding[J]. IEEE Transactions on Image Processing, 2021, 30: 7541-7553. [55] WU W B, SU Y X, LYU M R, et al. Improving the transferability of adversarial samples with adversarial transformations[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9020-9029. [56] WAN X S, LIU W, NIU C Y, et al. Black-box universal adversarial attack for DNN-based models of SAR automatic target recognition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 8673-8696. [57] WANG T, YING Z J, LI Q M, et al. Boost adversarial transferability by uniform scale and mix mask method[J]. arXiv: 2311. 12051, 2023. [58] FAN J X, YAN Q, LI M H, et al. A survey on data poisoning attacks and defenses[C]//Proceedings of the 2022 7th IEEE International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2022: 48-55. [59] LI Y M, JIANG Y, LI Z F, et al. Backdoor learning: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(1): 5-22. [60] ILYAS A, ENGSTROM L, ATHALYE A, et al. Black-box adversarial attacks with limited queries and information[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 2137-2146. [61] XIE C H, ZHANG Z S, ZHOU Y Y, et al. Improving transferability of adversarial examples with input diversity[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2725-2734. [62] ATHALYE A, ENGSTROM L, ILYAS A, et al. Synthesizing robust adversarial examples[C]//Proceedings of the 35th International Conference on Machine Learning, 2018: 284-293. [63] WEI X X, PU B Z, LU J F, et al. Visually adversarial attacks and defenses in the physical world: a survey[J]. arXiv:2211. 01671, 2022. [64] ZHANG C N, BENZ P, LIN C G, et al. A survey on universal adversarial attack[C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence, 2021: 4687-4694. [65] YAN X Y, CHEN X S, JIANG Y, et al. Hijacking tracker: a powerful adversarial attack on visual tracking[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 2897-2901. [66] JIA S, MA C, SONG Y B, et al. Robust tracking against adversarial attacks[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 69-84. [67] JIA S, SONG Y B, MA C, et al. IoU attack: towards temporally coherent black-box adversarial attack for visual object tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6705-6714. [68] 姚睿, 朱享彬, 周勇, 等. 基于重要特征的视觉目标跟踪可迁移黑盒攻击方法[J]. 电子学报, 2023, 51(4): 826-834. YAO R, ZHU X B, ZHOU Y, et al. Transferable black box attack on visual object tracking based on important features[J]. Acta Electronica Sinica, 2023, 51(4): 826-834. [69] YAN B, WANG D, LU H C, et al. Cooling-shrinking attack: blinding the tracker with imperceptible noises[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 987-996. [70] 程旭, 王莹莹, 张年杰, 等. 基于空间感知的多级损失目标跟踪对抗攻击方法[J]. 通信学报, 2021, 42(11): 242-254. CHENG X, WANG Y Y, ZHANG N J, et al. Multi?level loss object tracking adversarial attack method based on spatial perception[J]. Journal on Communications, 2021, 42(11): 242-254. [71] SUTTAPAK W, ZHANG J F, ZHANG L Q. Diminishing-feature attack: the adversarial infiltration on visual tracking[J]. Neurocomputing, 2022, 509: 21-33. [72] PANG H B, MA R Q, LIU C M, et al. An efficient method to fool and enhance object tracking with adversarial perturbations[J]. Neural Computing and Applications, 2023, 35(15): 10821-10836. [73] FU C H, LI S H, YUAN X N, et al. Ad2Attack: adaptive adversarial attack on real-time UAV tracking[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 5893-5899. [74] YIN X Y, RUAN W J, FIELDSEND J. DIMBA: discretely masked black-box attack in single object tracking[J]. Machine Learning, 2024, 113(4): 1705-1723. [75] ZHOU Z, SUN Y H, SUN Q S, et al. Only once attack: fooling the tracker with adversarial template[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(7): 3173-3184. [76] WIYATNO R, XU A Q. Physical adversarial textures that fool visual object tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 4821-4830. [77] DING L, WANG Y W, YUAN K W, et al. Towards universal physical attacks on single object tracking[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(2): 1236-1245. [78] LI Z B, SHI Y Y, GAO J, et al. A simple and strong baseline for universal targeted attacks on Siamese visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(6): 3880-3894. [79] LIU S A, CHEN Z Y, LI W, et al. Efficient universal shuffle attack for visual object tracking[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 2739-2743. [80] LI Y M, ZHONG H X, MA X J, et al. Few-shot backdoor attacks on visual object tracking[J]. arXiv:2201.13178, 2022. [81] GUO Q, CHENG Z Y, JUEFEI-XU F, et al. Learning to adversarially blur visual object tracking[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10819-10828. [82] HELD D, THRUN S, SAVARESE S. Learning to track at 100 FPS with deep regression networks[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 749-765. [83] ZHOU M, WANG L, NIU Z X, et al. Adversarial attack and defense in deep ranking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(8): 5306-5324. [84] WEI X X, HUANG Y, SUN Y T, et al. Unified adversarial patch for visible-infrared cross-modal attacks in the physical world[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(4): 2348-2363. [85] XIE T X, HAN H, SHAN S G, et al. Natural adversarial mask for face identity protection in physical world[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(3): 2089-2106. [86] SUN G X, ALPCAN T, RUBINSTEIN B I P, et al. To act or not to act: an adversarial game for securing vehicle platoons[J]. IEEE Transactions on Information Forensics and Security, 2023, 19: 163-177. [87] CHEN Y Z, TANG Y Q, XIAO Y, et al. Satellite video single object tracking: a systematic review and an oriented object tracking benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 210: 212-240. [88] YANG J W, PAN Z X, WANG Z M, et al. SiamMDM: an adaptive fusion network with dynamic template for real-time satellite video single object tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5608619. [89] BAI T, LUO J Q, ZHAO J, et al. Recent advances in adversarial training for adversarial robustness[J]. arXiv:2102. 01356, 2021. [90] SOLL M, HINZ T, MAGG S, et al. Evaluating defensive distillation for defending text processing neural networks against adversarial example[C]//Proceedings of the 28th International Conference on Artificial Neural Networks. Cham: Springer, 2019: 685-696. [91] HAMEED M Z, GY?RGY A, GüNDüZ D. The best defense is a good offense: adversarial attacks to avoid modulation detection[J]. IEEE Transactions on Information Forensics and Security, 2020, 16: 1074-1087. [92] LI Z H, CUI Y B, LIN Y, et al. MMF-track: multi-modal multi-level fusion for 3D single object tracking[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1817-1829. [93] ZHU H, ZHANG P P, XUE L, et al. Multi-modal understanding and generation for object tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025, 35(5): 4384-4396. [94] WANG X, SUN Z J, CHEHRI A, et al. Deep learning and multi-modal fusion for real-time multi-object tracking: algorithms, challenges, datasets, and comparative study[J]. Information Fusion, 2024, 105: 102247. [95] LU D, WANG Z Q, WANG T, et al. Set-level guidance attack: boosting adversarial transferability of vision-language pre-training models[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 102-111. [96] WEI X X, HUANG Y, SUN Y T, et al. Unified adversarial patch for cross-modal attacks in the physical world[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 4422-4431. [97] ZHANG Z, YUAN X, ZHU L, et al. BadCM: invisible backdoor attack against cross-modal learning[J]. IEEE Transactions on Image Processing, 2024, 33: 2558-2571. [98] HINGUN N, SITAWARIN C, LI J, et al. REAP: a large-scale realistic adversarial patch benchmark[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 4617-4628. [99] WEI H, TANG H, JIA X M, et al. Physical adversarial attack meets computer vision: a decade survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 9797-9817. [100] NAYAK G K, KHATRI I, RAWAL R, et al. Data-free defense of black box models against adversarial attacks[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2024: 254-263. |
| [1] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [2] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [3] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [4] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [5] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [6] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [7] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [8] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [9] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [10] | 赵恩浩, 凌捷. 基于GAN的无数据黑盒对抗攻击方法[J]. 计算机工程与应用, 2025, 61(7): 204-212. |
| [11] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [12] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [13] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [14] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [15] | 李佳静, 李盛, 戴媛媛, 孟涛, 罗小清, 闫宏飞. 融合位置信息和交互注意力的方面级情感分析[J]. 计算机工程与应用, 2025, 61(6): 220-228. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||