[1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[2] WEI L, DRAGOMIR A, DUMITRU E, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[3] ZHANG J, QIAN S R, TAN C. Automated bridge crack detection method based on lightweight vision models[J]. Complex & Intelligent Systems, 2023, 9(2): 1639-1652.
[4] 闫卫坡, 王志斌, 任祖跃, 等. 基于改进YOLOv5模型的高速道路裂缝检测研究[J]. 软件导刊, 2023, 22(10): 191-197.
YAN W P, WANG Z B, REN Z Y, et al. Research on expressway crack detection based on improved YOLOv5 model[J]. Software Guide, 2023, 22(10): 191-197.
[5] YU G, ZHOU X L. An improved YOLOv5 crack detection method combined with a bottleneck transformer[J]. Mathematics, 2023, 11(10): 2377.
[6] 刘浩翰, 樊一鸣, 贺怀清, 等. 改进YOLOv7-tiny的目标检测轻量化模型[J]. 计算机工程与应用, 2023, 59(14): 166-175.
LIU H H, FAN Y M, HE H Q, et al. Improved YOLOv7-tiny’s object detection lightweight model[J]. Computer Engineering and Applications, 2023, 59(14): 166-175.
[7] 王博, 李齐, 刘皎. 一种轻量级的SSD道路裂缝检测算法[J]. 商洛学院学报, 2022, 36(4): 83-90.
WANG B, LI Q, LIU J. A lightweight SSD road crack detection algorithm[J]. Journal of Shangluo University, 2022, 36(4): 83-90.
[8] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[9] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[10] 王欣杰. 基于改进U-Net的道路裂缝图像分割方法研究[D]. 杭州: 杭州电子科技大学, 2023.
WANG X J. Research on road crack image segmentation method based on improved U-Net[D]. Hangzhou: Hangzhou Dianzi University, 2023.
[11] KANG D, BENIPAL S S, GOPAL D L, et al. Hybrid pixel-level concrete crack segmentation and quantification across complex backgrounds using deep learning[J]. Automation in Construction, 2020, 118: 103291.
[12] YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 3rd International Conference on Machine Learning, 2021: 11863-11874.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475.
[14] JOCHER G, CHAURASIA A, STOKEN A, et al. YOLOv5: v6.2-YOLOv5 classification models, Apple M1, reproducibility, ClearML and Deci. ai integrations[EB/OL]. (2022-08-17)[2024-01-15]. https://zenodo.org/record/7002879.
[15] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[16] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[17] CHEN J R, KAO S H, HE H, et al. Run, don’t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[18] LI C Y, LI L L, GENG Y F, et al. YOLOv6 v3. 0: a full-scale reloading[J]. arXiv:2301.05586, 2023.
[19] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[20] ARYA D, MAEDA H, GHOSH S K, et al. Crowdsensing-based road damage detection challenge (CRDDC’2022)[C]//Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2022: 6378-6386.
[21] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[22] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020. |