计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 372-380.DOI: 10.3778/j.issn.1002-8331.2404-0256

• 工程与应用 • 上一篇    

改进YOLOv7-Tiny的道路裂缝检测算法

王启涵,刘超   

  1. 江苏大学 电气信息工程学院,江苏 镇江 212013
  • 出版日期:2025-05-15 发布日期:2025-05-15

Improved YOLOv7-Tiny Road Crack Detection Algorithm

WANG Qihan, LIU Chao   

  1. College of Electrical Information Engineering, ?Jiangsu University, Zhenjiang,?Jiangsu 212013, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 道路裂缝检测是道路工程中的重要环节。针对现阶段道路裂缝检测算法中准确度低、效率低的问题,提出了一种基于YOLOv7-Tiny的轻量型道路裂缝检测算法YOLOv7-TPSF。引入部分卷积PConv,对原网络中耗参量较多的3×3卷积层进行部分替换,降低模型的参数量,提升模型的训练速度;结合特征融合网络BiFusion Neck与加权特征金字塔BiFPN的优点,提出了新的特征融合模块Bi-FusFPN,减少网络计算量,强化多尺度特征的融合能力;在输出端添加无参注意力机制SimAM,进一步提高大、中、小三类目标的检测能力。实验结果表明,YOLOv7-TPSF算法相较于YOLOv7-Tiny算法,网络参数量与计算量分别减少了31.7%、34.6%,准确度与检测速度分别提高了3.7%、9.7%,一定程度上满足了道路裂缝检测准确性与实时性的需求。

关键词: 道路裂缝检测, YOLOv7-Tiny, 轻量型, 注意力机制, 特征融合模块Bi-FusFPN

Abstract: In terms of road engineering, road crack detection plays an important role. Aiming at the problems of low accuracy and efficiency in current road crack detection algorithms, a road crack detection lightweight algorithm YOLOv7-TPSF based on YOLOv7-Tiny is proposed. Partial convolution PConv is used to replace some 3×3 convolution layers with more consumption parameters in the original network to reduce the number of model parameters and improve the training speed of the model. Combining the advantages of the feature fusion network BiFusion Neck and the weighted bidirectional feature pyramid BiFPN, a new feature fusion module Bi-FusFPN is proposed to reduce network computation and strengthen the ability of multi-scale feature fusion. A non-parametric attention mechanism SimAM is added at the output end to further improve the detection ability of large, medium, and small targets. The experimental results show that compared to the YOLOv7-Tiny algorithm, the number of network parameters and computations in the YOLOv7-TPSF algorithm are reduced by 31.7% and 34.6%, the accuracy and detection speed are improved by 3.7% and 9.7%, meeting the requirements for accuracy and real-time detection of road cracks to a certain extent.

Key words: road crack detection, YOLOv7-Tiny, lightweight, attention mechanism, feature fusion module Bi-FusFPN