[1] PATTRAPORNPISUT P, AVILA-CASADO C, REICH H N. IgA nephropathy: core curriculum 2021[J]. American Journal of Kidney Diseases, 2021, 78(3): 429-441.
[2] WU H Y, XIA Z K, GAO C L, et al. The correlation analysis between the Oxford classification of Chinese IgA nephropathy children and renal outcome - a retrospective cohort study[J]. BMC Nephrology, 2020, 21(1): 247.
[3] AVASARE R S, ROSENSTIEL P E, ZAKY Z S, et al. Predicting post-transplant recurrence of IgA nephropathy: the importance of crescents[J]. American Journal of Nephrology, 2017, 45(2): 99-106.
[4] CATTRAN D C, COPPO R. The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification[J]. Kidney International, 2009, 76(5): 534-545.
[5] TRIMARCHI H, BARRATT J, CATTRAN D C, et al. Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group[J]. Kidney International, 2017, 91(5): 1014-1021.
[6] YOON C Y, CHANG T I, KANG E W, et al. Clinical usefulness of the Oxford classification in determining immunosuppressive treatment in IgA nephropathy[J]. Annals of Medicine, 2017, 49(3): 217-229.
[7] Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group. KDIGO 2021 clinical practice guideline for the management of glomerular diseases[J]. Kidney International, 2021, 100(4S): S1-S276.
[8] HAASKJOLD Y L, BJ?RNEKLETT R, BOSTAD L, et al. Utilizing the MEST score for prognostic staging in IgA nephropathy[J]. BMC Nephrology, 2022, 23(1): 26.
[9] PURWAR S, TRIPATHI R, BARWAD A W, et al. Detection of Mesangial hypercellularity of MEST-C score in immunoglobulin A-nephropathy using deep convolutional neural network[J]. Multimedia Tools and Applications, 2020, 79(37): 27683-27703.
[10] WEIS C A, BINDZUS J N, VOIGT J, et al. Assessment of glomerular morphological patterns by deep learning algorithms[J]. Journal of Nephrology, 2022, 35(2): 417-427.
[11] ALTINI N, ROSSINI M, TURKEVI-NAGY S, et al. Performance and limitations of a supervised deep learning approach for the histopathological Oxford classification of glomeruli with IgA nephropathy[J]. Computer Methods and Programs in Biomedicine, 2023, 242: 107814.
[12] LUCIANO R L, MOECKEL G W. Update on the native kidney biopsy: core curriculum 2019[J]. American Journal of Kidney Diseases, 2019, 73(3): 404-415.
[13] MAVROGEORGIS E, HE T L, MISCHAK H, et al. Urinary peptidomic liquid biopsy for non-invasive differential diagnosis of chronic kidney disease[J]. Nephrology, Dialysis, Transplantation, 2024, 39(3): 453-462.
[14] DHINDSA K, SMAIL L C, MCGRATH M, et al. Grading prenatal hydronephrosis from ultrasound imaging using deep convolutional neural networks[C]//Proceedings of the 2018 15th Conference on Computer and Robot Vision. Piscataway: IEEE, 2018: 80-87.
[15] KUO C C, CHANG C M, LIU K T, et al. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning[J]. NPJ Digital Medicine, 2019, 2: 29.
[16] NADEEM M, TAN G Z, ALTAF M, et al. Evaluation and classification of kidney stone detection using deep learning techniques[C]//Proceedings of the 2023 6th International Conference on Software Engineering and Computer Science. Piscataway: IEEE, 2023: 1-6.
[17] MANGAYARKARASI T, NAJUMNISSA JAMAL D. Kidney abnormalities prediction in ultrasound images using transfer learning approach[C]//Proceedings of the 2023 2nd International Conference on Advances in Computational Intelligence and Communication. Piscataway: IEEE, 2023: 1-6.
[18] 李广涵, 刘健, 马立勇, 等. 基于深度学习的超声影像诊断对终末期慢性肾病的价值[J]. 中华医学超声杂志 (电子版), 2021, 18(6): 611-615.
LI G H, LIU J, MA L Y, et al. Deep learning-based model for ultrasound diagnosis of end-stage chronic kidney disease[J]. Chinese Journal of Medical Ultrasound (Electronic Edition), 2021, 18(6): 611-615.
[19] TANG Z Y, LIN Y C, SHEN C C. Dual-path convolutional neural network for chronic kidney disease classification in ultrasound echography[C]//Proceedings of the 2022 IEEE International Ultrasonics Symposium. Piscataway: IEEE, 2022: 1-4.
[20] GHEFLATI B, RIVAZ H. Vision transformers for classification of breast ultrasound images[C]//Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Piscataway: IEEE, 2022: 480-483.
[21] HUANG H, DONG Y J, JIA X H, et al. Personalized diagnostic tool for thyroid cancer classification using multi-view ultrasound[C]//Proceedings of the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2022: 665-674.
[22] SARKER M M K, SINGH V K, ALSHARID M, et al. COMFormer: classification of maternal-fetal and brain anatomy using a residual cross-covariance attention guided transformer in ultrasound[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70(11): 1417-1427.
[23] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 764-773.
[24] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[25] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 357-366.
[26] JIANG J Y, ZHANG P Y, LUO Y T, et al. AdaMCT: adaptive mixture of CNN-transformer for sequential recommendation[C]//Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York: ACM, 2023: 976-986.
[27] SHAREEF B, XIAN M, VAKANSKI A, et al. Breast ultrasound tumor classification using a hybrid multitask CNN-transformer network[C]//Proceedings of the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2023: 344-353. |