[1] CHEN B, WANG Y C, LIU Z R, et al. Enhancing explicit and implicit feature interactions via information sharing for parallel deep CTR models[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3757-3766.
[2] LIU B, ZHU C X, LI G L, et al. AutoFIS: automatic feature interaction selection in factorization models for click-through rate prediction[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 2636-2645.
[3] MCMAHAN H B, HOLT G, SCULLEY D, et al. Ad click prediction[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2013: 1222-1230.
[4] RICHARDSON M, DOMINOWSKA E, RAGNO R, et al. Predicting clicks[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 521-530.
[5] RENDLE S. Factorization machines[C]//Proceedings of the 2010 IEEE International Conference on Data Mining. Piscataway: IEEE, 2010: 995-1000.
[6] JUAN Y, ZHUANG Y, CHIN W S, et al. Field-aware factorization machines for CTR prediction[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 43-50.
[7] MU R H. A survey of recommender systems based on deep learning[J]. IEEE Access, 2018, 6: 69009-69022.
[8] COVINGTON P, ADAMS J, SARGIN E, et al. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. New York: ACM, 2016: 191-198.
[9] CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10.
[10] GUO H F, TANG R M, YE Y M, et al. DeepFM: a factorization-machine based neural network for CTR prediction[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 1725-1731.
[11] HE X N, CHUA T S, HE X N, et al. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017: 355-364.
[12] QU Y R, CAI H, REN K, et al. Product-based neural networks for user response prediction[C]//Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Piscataway: IEEE, 2016: 1149-1154.
[13] WANG R X, FU B, FU G, et al. Deep & cross network for ad click predictions[C]//Proceedings of the ADKDD’17. New York: ACM, 2017: 1-7.
[14] LIAN J X, ZHOU X H, ZHANG F Z, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1754-1763.
[15] 陈彬, 张荣梅, 张琦. DCFM: 基于深度学习的混合推荐模型[J]. 计算机工程与应用, 2021, 57(3): 150-155.
CHEN B, ZHANG R M, ZHANG Q. DCFM: hybrid recommendation model based on deep learning[J]. Computer Engineering and Applications, 2021, 57(3): 150-155.
[16] VASWANI A, SHAZEER N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[17] CHENG Y, XUE Y B, CHENG Y, et al. Looking at CTR prediction again: is attention all you need?[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1279-1287.
[18] XIAO J, YE H, HE X N, et al. Attentional factorization machines: learning the weight of feature interactions via attention networks[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, 2017: 3119-3125.
[19] TAO Z L, WANG X, HE X N, et al. HoAFM: a high-order attentive factorization machine for CTR prediction[J]. Information Processing & Management, 2020, 57(6): 102076.
[20] SONG W P, SHI C C, XIAO Z P, et al. AutoInt: automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1161-1170.
[21] LI X, CHEN S W, DONG J, et al. Decision-making context interaction network for click-through rate prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 5195-5202.
[22] LIN H, CHENG X, WU X, et al. CAT: cross attention in vision transformer[C]//Proceedings of the 2022 IEEE International Conference on Multimedia and Expo, 2022: 1-6.
[23] JAEGLE A, BORGEAUD S, ALAYRAC J B, et al. Perceiver IO: a general architecture for structured inputs & outputs[J]. arXiv:2107.14795, 2021.
[24] HUANG T W, ZHANG Z Q, ZHANG J L, et al. FiBiNET: combining feature importance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems. New York: ACM, 2019: 169-177.
[25] WANG Z Q, SHE Q Y, ZHANG J L, et al. MaskNet: introducing feature-wise multiplication to CTR ranking models by instance-guided mask[J]. arXiv:2102.07619, 2021. |