计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (7): 361-369.DOI: 10.3778/j.issn.1002-8331.2311-0461

• 工程与应用 • 上一篇    下一篇

动态环境下改进BIT*算法的机器人路径规划

王晓军,崔锡杰,李晓航   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 出版日期:2025-04-01 发布日期:2025-04-01

Robot Path Planning with Improved BIT* Algorithm in Dynamic Environment

WANG Xiaojun, CUI Xijie, LI Xiaohang   

  1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • Online:2025-04-01 Published:2025-04-01

摘要: 针对批量通知树算法在小样本中搜索路径成功率低、大样本中规划效率低、路径冗余节点多以及无法躲避未知障碍物的问题,提出动态环境批量通知树算法。利用改进批量采样点策略将样本点均匀等间距处理,并改进批量采样点数量以及偏置采样点位置,弥补搜索路径成功率低的缺点;加入惩罚项改进启发式函数,弥补路径规划效率低的缺点;再引入路径拉伸优化减少路径长度以及冗余节点,缩小采样范围。面对未知障碍物,利用反向生长搜索树先验信息提出临时目标点选取策略,并结合改进随机点、转向角以及新节点的快速扩展随机树(RRT)算法,避免重规划路径过分偏离以及不能及时躲避。与其他算法进行对比,结果表明:动态环境批量通知树算法规划路径成功率和效率更高,路径长度和拐点数更少,躲避未知障碍物性能更高,重规划路径更接近全局路径。

关键词: 批量通知树算法, 反向生长搜索树, 批量采样点策略, 启发式函数, 快速扩展随机树(RRT)算法, 路径重规划

Abstract: Aiming at the problems of low success rate in searching paths in small samples, low planning efficiency in large samples, many redundant nodes in paths and inability to avoid unknown obstacles, a dynamic environment batch informed trees algorithm is proposed. The improved batch sampling point strategy is used to process the sample points evenly and equally spaced, and the number of batch sampling points and the location of biased sampling points are improved to make up for the low success rate of the search path. Adding a penalty term to improve the heuristic function makes up for the low efficiency of path planning. Then the path stretching optimization is introduced to reduce the path length and redundant nodes and narrow the sampling range. In the face of unknown obstacles, a temporary target point selection strategy is proposed by using the prior information of the reverse growth search tree, and the RRT algorithm of random points, turning angles and new nodes is improved to avoid excessive deviation of the replanned path and timely avoidance. Compared with other algorithms, the results show that batch notification tree algorithm in dynamic environment has higher success rate and efficiency, less path length and number of inflection points, higher performance of avoiding unknown obstacles, and closer to the global path.

Key words: batch informed trees algorithm, reverse growth search tree, batch sampling point strategy, heuristic function, rapidly exploring random tree(RRT) algorithm, path replanning