
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (4): 25-42.DOI: 10.3778/j.issn.1002-8331.2403-0315
李小童,马素芬,生慧,魏国辉,李欣桐
出版日期:2025-02-15
发布日期:2025-02-14
LI Xiaotong, MA Sufen, SHENG Hui, WEI Guohui, LI Xintong
Online:2025-02-15
Published:2025-02-14
摘要: 肺癌严重威胁人们的生命健康。肺部CT图像病灶区域形态复杂多样,实现高精度的肺部CT图像病变区域分割,成为计算机辅助诊断领域的一个极具挑战性的关键问题。基于深度学习的肺部病灶区域分割不仅可以帮助医生快速、准确地诊断出早期肺癌,而且对于肺癌的治疗也具有重要的临床价值。为了深入研究肺部病灶区域分割技术,介绍了常用的数据集及评价指标;重点从基于卷积神经网络、基于U-Net模型、基于生成对抗网络三个方面对深度学习肺部病灶区域分割模型进行了综述;结合具体实验总结了近5年国内外研究的创新点,对比分析了各个模型的分割性能;最后总结了各类模型的优缺点,展望了该领域的未来发展方向。
李小童, 马素芬, 生慧, 魏国辉, 李欣桐. 基于深度学习的肺部CT图像病灶区域分割研究综述[J]. 计算机工程与应用, 2025, 61(4): 25-42.
LI Xiaotong, MA Sufen, SHENG Hui, WEI Guohui, LI Xintong. Review of Lung CT Image Lesion Region Segmentation Based on Deep Learning[J]. Computer Engineering and Applications, 2025, 61(4): 25-42.
| [1] 张晶. 基于3D U-Net的肺结节语义分割算法研究[D]. 杨凌: 西北农林科技大学, 2023. ZHANG J. Research on semantic segmentation algorithm of pulmonary nodules based on 3D U-Net[D]. Yangling: Northwest A & F University, 2023. [2] SIEGEL R L, GIAQUINTO A N, JEMAL A. Cancer statistics, 2024[J]. CA: A Cancer Journal for Clinicians, 2024, 74(1): 12-49. [3] YING X, GUO H, MA K, et al. X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10611-10620. [4] SHAO J, WANG G, YI L, et al. Deep learning empowers lung cancer screening based on mobile low-dose computed tomography in resource-constrained sites[J]. Frontiers in Bioscience, 2022, 27(7): 212. [5] FU Y, XUE P, XIAO T, et al. Semi-supervised adversarial learning for improving the diagnosis of pulmonary nodules[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(1): 109-120. [6] HSU C T, CHEN C H, HUANG C Y. Image segmentation model detects abdominal aortic calcification in dialysis patients[J]. Journal of the American Society of Nephrology, 2023, 34(11S): 1065. [7] 沈权猷, 张小波, 李文豪, 等. U-Net在肺结节分割中的应用进展[J]. 计算机应用, 2023, 43(S1): 250-257. SHEN Q Y, ZHANG X B, LI W H, et al. Application progress of U-Net in lung nodule segmentation[J]. Journal of Computer Applications, 2023, 43(S1): 250-257. [8] 冯龙锋, 陈英, 周滔辉, 等. CT图像肺及肺病变区域分割方法综述[J]. 中国图象图形学报, 2022, 27(3): 722-749. FENG L F, CHEN Y, ZHOU T H, et al. Review of human lung and lung lesion regions segmentation methods based on CT images[J]. Journal of Image and Graphics, 2022, 27(3): 722-749. [9] ARMATO S G, MCLENNAN G, BIDAUT L, et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931. [10] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13. [11] 贾锋, 薛潺涓, 王欣. 用于肺结节检测和分类的两阶段深度学习方法[J]. 吉林大学学报 (理学版), 2020, 58(2): 329-336. JIA F, XUE C J, WANG X. Two-stage deep learning method for detection and classification of pulmonary nodules[J]. Journal of Jilin University (Science Edition), 2020, 58(2): 329-336. [12] MEDSEG. COVID-19 CT segmentation dataset[EB/OL]. (2020-04-11)[2024-03-11]. http://medicalsegmentation.com/covid19/. [13] FAN D P, ZHOU T, JI G P, et al. Inf-Net: automatic COVID-19 lung infection segmentation from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2626-2637. [14] YANG X, HE X, ZHAO J, et al. COVID-CT-dataset: a CT scan dataset about COVID-19[J]. arXiv:2003.13865, 2020. [15] MA J, WANG Y, AN X, et al. Toward data-efficient learning: a benchmark for COVID-19 CT lung and infection segmentation[J]. Medical Physics, 2021, 48(3): 1197-1210. [16] MOROZOV S P, ANDREYCHENKO A E, BLOKHIN I A, et al. MosMedData: data set of 1110 chest CT scans performed during the COVID-19 epidemic[J]. Digital Diagnostics, 2020, 1(1): 49-59. [17] WANG G, LIU X, LI C, et al. A noise-robust framework for automatic segmentation of COVID-19 pneumonia lesions from CT images[J]. IEEE Transactions on Medical Imaging, 2020, 39(8): 2653-2663. [18] StructSeg2019. LC[EB/OL]. (2019-06-15)[2024-03-11]. https://structseg2019.grand-challenge.org/Home/. [19] CHRISTINA SWEETLINE B, VIJAYAKUMARAN C, SAMYDURAI A. Overcoming the challenge of accurate segmentation of lung nodules: a multi-crop CNN approach[J]. Journal of Imaging Informatics in Medicine, 2024, 37(3): 988-1007. [20] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [21] 沈熠婷, 陈昭, 张清华, 等. 全监督和弱监督图网络的病理图像分割[J]. 中国图象图形学报, 2024, 29(3): 697-712. SHEN Y T, CHEN Z, ZHANG Q H, et al. Fully and weakly supervised graph networks for histopathology image segmentation[J]. Journal of Image and Graphics, 2024, 29(3): 697-712. [22] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440. [23] LIU H, CAO H, SONG E, et al. A cascaded dual-pathway residual network for lung nodule segmentation in CT images[J]. Physica Medica, 2019, 63: 112-121. [24] HUANG X, SUN W, TSENG T L, et al. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks[J]. Computerized Medical Imaging and Graphics, 2019, 74: 25-36. [25] ODA M, HAYASHI Y, OTAKE Y, et al. Lung infection and normal region segmentation from CT volumes of COVID-19 cases[C]//Proceedings SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, 2021: 682-687. [26] MU N, WANG H, ZHANG Y, et al. Progressive global perception and local polishing network for lung infection segmentation of COVID-19 CT images[J]. Pattern Recognition, 2021, 120: 108168. [27] USMAN M, SHIN Y G. DEHA-net: a dual-encoder-based hard attention network with an adaptive ROI mechanism for lung nodule segmentation[J]. Sensors, 2023, 23(4): 1989. [28] USMAN M, LEE B D, BYON S S, et al. Volumetric lung nodule segmentation using adaptive ROI with multi-view residual learning[J]. Scientific Reports, 2020, 10(1): 12839. [29] POLAT H. A modified DeepLabV3+ based semantic segmentation of chest computed tomography images for COVID-19 lung infections[J]. International Journal of Imaging Systems and Technology, 2022, 32(5): 1481-1495. [30] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 833-851. [31] BUDAK ü, ??BUK M, C?MERT Z, et al. Efficient COVID-19 segmentation from CT slices exploiting semantic segmentation with integrated attention mechanism[J]. Journal of Digital Imaging, 2021, 34(2): 263-272. [32] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [33] ZHANG J, LIU Y, WU Q, et al. SWTRU: star-shaped window transformer reinforced U-Net for medical image segmentation[J]. Computers in Biology and Medicine, 2022, 150: 105954. [34] 吴骏, 侯宪哲, 王健, 等. 基于Transformer和CNN交错混合的肺结节分割网络[J]. 天津工业大学学报, 2024, 43(1): 74-81. WU J, HOU X Z, WANG J, et al. Interlace mixed net of lung nodule segmentation based on Transformer and CNN[J]. Journal of Tiangong University, 2024, 43(1): 74-81. [35] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002. [36] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19. [37] FENG S, ZHAO H, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018. [38] JIANG H, SHI T, BAI Z, et al. AHCNet: an application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes[J]. IEEE Access, 2019, 7: 24898-24909. [39] TANG T, LI F, JIANG M, et al. Improved complementary pulmonary nodule segmentation model based on multi-feature fusion[J]. Entropy, 2022, 24(12): 1755. [40] WANG X, YANG B, PAN X, et al. BPCN: bilateral progressive compensation network for lung infection image segmentation[J]. Physics in Medicine and Biology, 2023, 68(3): 035001. [41] LU F, ZHANG Z, LIU T, et al. A weakly supervised inpainting-based learning method for lung CT image segmentation[J]. Pattern Recognition, 2023, 144: 109861. [42] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. [43] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[J]. arXiv:1804.03999, 2018. [44] SUN W C, FENG X, LIU J Y, et al. Weakly supervised segmentation of COVID-19 infection with local lesion coherence on CT images[J]. Biomedical Signal Processing and Control, 2023, 79: 104099. [45] CHEN Z, XU Q, CONG R, et al. Global context-aware progressive aggregation network for salient object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 10599-10606. [46] OBUKHOV A, GEORGOULIS S, DAI D, et al. Gated CRF loss for weakly supervised semantic image segmentation[J]. arXiv:1906.04651, 2019. [47] TARVAINEN A, VALPOLA H. Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results[C]//Advances in Neural Information Processing Systems 30, 2017. [48] 李文聪. 半监督的道路可行区域检测算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022. LI W C. Reseach on on semi supervised road drivable area detection algorithm[D]. Harbin: Harbin Institute of Technology, 2022. [49] CAI G W, LIU Y B, FENG Q J, et al. Semi-supervised segmentation of interstitial lung disease patterns from CT images via self-training with selective re-training[J]. Bioengineering, 2023, 10(7): 830. [50] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. [51] YANG L, ZHUO W, QI L, et al. ST++: make self-training Work better for semi-supervised semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4258-4267. [52] LU X, XU Y, YUAN W. DBF-Net: a semi-supervised dual-task balanced fusion network for segmenting infected regions from lung CT images[J]. Evolving Systems, 2023, 14(3): 519-532. [53] SHAN F, GAO Y, WANG J, et al. Abnormal lung quantification in chest CT images of COVID-19 patients with deep learning and its application to severity prediction[J]. Medical Physics, 2021, 48(4): 1633-1645. [54] LIU S, CAI T, TANG X, et al. MRL-net: multi-scale representation learning network for COVID-19 lung CT image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(9): 4317-4328. [55] FAN X, FENG X. SELDNet: sequenced encoder and lightweight decoder network for COVID-19 infection region segmentation[J]. Displays, 2023, 77: 102395. [56] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241. [57] 梁隆凯, 付鹤, 陈峰蔚, 等. 深度学习与医学图像处理[M]. 北京: 人民邮电出版社, 2023: 95-99. LIANG L K, FU H, CHEN F W, et al. Deep learning and medical image processing[M]. Beijing: Posts & Telecom Press, 2023: 95-99. [58] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11. [59] HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2020: 1055-1059. [61] QIAN L, WEN C, LI Y, et al. Multi-scale context UNet-like network with redesigned skip connections for medical image segmentation[J]. Computer Methods and Programs in Biomedicine, 2024, 243: 107885. [62] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015. [63] SELVADASS S, BRUNTHA P M, SAGAYAM K M, et al. SAtUNet: series atrous convolution enhanced U-Net for lung nodule segmentation[J]. International Journal of Imaging Systems and Technology, 2024, 34(1): 22964. [64] WU Z, LI X, ZUO J. RAD-UNet: research on an improved lung nodule semantic segmentation algorithm based on deep learning[J]. Frontiers in Oncology, 2023, 13: 1084096. [65] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [66] ZHANG X, KONG S, HAN Y, et al. Lung nodule CT image segmentation model based on multiscale dense residual neural network[J]. Mathematics, 2023, 11(6): 1363. [67] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269. [68] 卢小燕, 徐杨, 袁文昊. 用于肺部病灶图像分割的多尺度稠密融合网络[J]. 计算机应用, 2023, 43(10): 3282-3289. LU X Y, XU Y, YUAN W H. Multiscale dense fusion network for lung lesion image segmentation[J]. Journal of Computer Applications, 2023, 43(10): 3282-3289. [69] 林洁沁, 黄新. 多尺度特征融合注意力新冠肺炎病灶分割网络[J]. 激光杂志, 2024, 45(3): 168-174. LIN J Q, HUANG X. COVID-19 lesion segmentation network based on multi-scale feature fusion attention[J]. Laser Journal, 2024, 45(3): 168-174. [70] 万黎明, 张小乾, 刘知贵, 等. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报 (自然科学版), 2022, 40(3): 66-75. WAN L M, ZHANG X Q, LIU Z G, et al. CT image segmentation of UNet pulmonary nodules based on efficient channel attention[J]. Journal of Guangxi Normal University (Natural Science Edition), 2022, 40(3): 66-75. [71] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520. [72] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 1-11. [73] HOU J, YAN C, LI R, et al. Lung nodule segmentation algorithm with SMR-UNet[J]. IEEE Access, 2023, 11: 34319-34331. [74] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv:1706.05587, 2017. [75] CHEN Y, HOU X, YANG Y, et al. Segmentation of lung nodules based on a refined segmentation network[J]. Medical Physics, 2024, 51(4): 2759-2771. [76] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 2016 4th International Conference on 3D Vision. Piscataway: IEEE, 2016: 565-571. [77] YUE Y, KONG F, CHENG M, et al. KFS-net: key features sampling network for lung nodule segmentation[J]. Sensing and Imaging, 2023, 25(1): 3. [78] ISENSEE F, PETERSEN J, KLEIN A, et al. nnU-Net: self-adapting framework for U-Net-based medical image segmentation[J]. arXiv:1809.10486, 2018. [79] WANG C, XU R, XU S, et al. Accurate lung nodule segmentation with detailed representation transfer and soft mask supervision[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(12): 18381-18393. [80] 马金林, 邓媛媛, 马自萍. 肝脏肿瘤CT图像深度学习分割方法综述[J]. 中国图象图形学报, 2020, 25(10): 2024-2046. MA J L, DENG Y Y, MA Z P. Review of deep learning segmentation methods for CT images of liver tumors[J]. Journal of Image and Graphics, 2020, 25(10): 2024-2046. [81] LEE B J, MARTIROSYAN S T, KHAN Z, et al. Attention-based automated chest CT image segmentation method of COVID-19 lung infection[C]//Proceedings of the 2022 IEEE 22nd International Conference on Bioinformatics and Bioengineering. Piscataway: IEEE, 2022: 158-163. [82] ZHAO J, DANG M, CHEN Z, et al. DSU-Net: distraction-sensitive U-Net for 3D lung tumor segmentation[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104649. [83] BANU S F, SARKER M M K, ABDEL-NASSER M, et al. AWEU-Net: an attention-aware weight excitation U-Net for lung nodule segmentation[J]. Applied Sciences, 2021, 11(21): 10132. [84] PENG Y, ZHANG T, GUO Y. Cov-TransNet: dual branch fusion network with transformer for COVID-19 infection segmentation[J]. Biomedical Signal Processing and Control, 2023, 80: 104366. [85] 程照雪, 李阳, 周妍, 等. 增强边缘特征的肺结节分割模型[J]. 计算机工程与应用, 2023, 59(24): 185-195. CHENG Z X, LI Y, ZHOU Y, et al. Lung nodule segmentation model with enhanced edge features[J]. Computer Engineering and Applications, 2023, 59(24): 185-195. [86] LUAN S Z, CHEN C, ZHANG B C, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357-4366. [87] ?I?EK ?, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 424-432. [88] WU Z, ZHOU Q, WANG F. Coarse-to-fine lung nodule segmentation in CT images with image enhancement and dual-branch network[J]. IEEE Access, 2021, 9: 7255-7262. [89] WANG T, WU F, LU H, et al. CA-UNet: convolution and attention fusion for lung nodule segmentation[J]. International Journal of Imaging Systems and Technology, 2023, 33(5): 1469-1479. [90] SAHA S, DUTTA S, GOSWAMI B, et al. ADU-Net: an attention dense U-Net based deep supervised DNN for automated lesion segmentation of COVID-19 from chest CT images[J]. Biomedical Signal Processing and Control, 2023, 85: 104974. [91] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, 2014: 2672-2680. [92] LUC P, COUPRIE C, CHINTALA S, et al. Semantic segmentation using adversarial networks[J]. arXiv:1611.08408, 2016. [93] 郜一玮. 基于生成对抗网络的多模态图像融合模型研究[D]. 淮南: 安徽理工大学, 2022. GAO Y W. Research on multi-modality image fusion model based on generative adversarial network[D]. Huainan: Anhui University of Science and Technology, 2022. [94] 张宜劼. 连续时间Dynkin博弈的纳什均衡点存在性的一个新证明[J]. 宁夏大学学报 (自然科学版), 2019, 40(3): 197-203. ZHANG Y J. A new method on the existence of the Nash equilibrium for continuous time stochastic games with stopping times[J]. Journal of Ningxia University (Natural Science Edition), 2019, 40(3): 197-203. [95] TYAGI S, TALBAR S N. CSE-GAN: a 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation[J]. Computers in Biology and Medicine, 2022, 147: 105781. [96] ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel “squeeze & excitation” in fully convolutional networks[C]//Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2018: 421-429. [97] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. [98] 赵俊强, 李骥, 王昌, 等. DA-GAN肺结节分割网络研究[J]. 中国测试, 2022, 48(9): 118-124. ZHAO J Q, LI J, WANG C, et al. Research of DA-GAN pulmonary nodule segmentation[J]. China Measurement & Test, 2022, 48(9): 118-124. [99] 张秀峰, 李永鑫, 王苇, 等. 生成对抗网络磨玻璃样肺结节分割方法[J]. 无线电工程, 2023, 53(1): 161-167. ZHANG X F, LI Y X, WANG W, et al. A generative adversarial network for ground glass pulmonary nodule segmentation[J]. Radio Engineering, 2023, 53(1): 161-167. [100] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807. [101] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2242-2251. [102] CONNELL M, XIN Y, GERARD S E, et al. Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN[J]. Methods, 2022, 205: 200-209. [103] SHI Z, HU Q, YUE Y, et al. Automatic nodule segmentation method for CT images using aggregation-U-net generative adversarial networks[J]. Sensing and Imaging, 2020, 21(1): 39. [104] JAIN S, INDORA S, ATAL D K. Lung nodule segmentation using salp shuffled shepherd optimization algorithm-based generative adversarial network[J]. Computers in Biology and Medicine, 2021, 137: 104811. [105] SHERWANI M K, MARZULLO A, DE MOMI E, et al. Lesion segmentation in lung CT scans using unsupervised adversarial learning[J]. Medical & Biological Engineering & Computing, 2022, 60(11): 3203-3215. [106] 王国凯, 张翔, 王顺芳. 多尺度和边界融合的皮肤病变区域分割网络[J]. 计算机科学与探索, 2024, 18(7): 1826-1837. WANG G K, ZHANG X, WANG S F. Multi-scale and boundary fusion network for skin lesion regions segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(7): 1826-1837. [107] ZHAO Z A, FENG X F, REN X Q, et al. Uncertainty-guided cross learning via CNN and transformer for semi-supervised honeycomb lung lesion segmentation[J]. Physics in Medicine & Biology, 2023, 68(24): 245010. [108] 孙兴, 蔡肖红, 李明, 等. 视觉大模型SAM在医学图像分割中的应用综述[J]. 计算机工程与应用, 2024, 60(17): 1-16. SUN X, CAI X H, LI M, et al. Review of application of visual foundation model SAM in medical image segmentation[J]. Computer Engineering and Applications, 2024, 60(17): 1-16. [109] MAZUROWSKI M A, DONG H, GU H, et al. Segment anything model for medical image analysis: an experimental study[J]. Medical Image Analysis, 2023, 89: 102918. [110] GU J, YOU K, CHO H C, et al. CheX-GPT: harnessing large language models for enhanced chest X-ray report labeling[J]. arXiv:2401.11505, 2024. [111] 包强强, 唐思源, 谷宇. 深度学习检测肺结节难点问题综述[J]. 计算机工程与应用, 2024, 60(19): 18-31. BAO Q Q, TANG S Y, GU Y. Review of difficult problems of deep learning to detect lung nodules[J]. Computer Engineering and Applications, 2024, 60(19): 18-31. [112] 蒲秋梅, 殷帅, 李正茂, 等. U型卷积网络在乳腺医学图像分割中的研究综述[J]. 计算机科学与探索, 2024, 18(6): 1383-1403. PU Q M, YIN S, LI Z M, et al. Review of U-net-based convolutional neural networks for breast medical image segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1383-1403. |
| [1] | 洪书颖, 张东霖. 语义信息处理方式分类的车道线检测技术研究综述[J]. 计算机工程与应用, 2025, 61(5): 1-17. |
| [2] | 张建伟, 陈旭, 王叔洋, 景永俊, 宋吉飞. 时空图神经网络在物联网中的应用综述[J]. 计算机工程与应用, 2025, 61(5): 43-54. |
| [3] | 张红民, 郑敬添, 颜鼎鼎, 田钱前. 改进的生成对抗网络人体异常行为检测方法[J]. 计算机工程与应用, 2025, 61(5): 147-154. |
| [4] | 余城旭, 张宇来. 基于微调的深度学习后门防御研究[J]. 计算机工程与应用, 2025, 61(5): 155-164. |
| [5] | 梁成武, 胡伟, 杨杰, 蒋松琪, 侯宁. 融合时空领域知识与数据驱动的骨架行为识别[J]. 计算机工程与应用, 2025, 61(5): 165-176. |
| [6] | 李鑫, 张丹, 郭新, 汪松, 陈恩庆. 基于CNN和Transformer双流融合的人体姿态估计[J]. 计算机工程与应用, 2025, 61(5): 187-199. |
| [7] | 董甲东, 郭庆虎, 陈琳, 桑飞虎. 深度学习中单阶段金属表面缺陷检测算法优化综述[J]. 计算机工程与应用, 2025, 61(4): 72-89. |
| [8] | 雷景生, 章志豪, 钱小鸿, 王巍然, 杨胜英. 改进YOLOX的轻量级多方向车牌检测算法[J]. 计算机工程与应用, 2025, 61(4): 230-240. |
| [9] | 袁姮, 颜廷昊, 张晟翀. 两阶段特征迁移图像去雾算法[J]. 计算机工程与应用, 2025, 61(4): 241-252. |
| [10] | 张锴, 贾涛. 结合知识图谱和小目标改进的RCNN电力杆塔部件识别方法[J]. 计算机工程与应用, 2025, 61(4): 299-309. |
| [11] | 蒋悦晗, 陈俊杰, 李洪均. 基于骨骼图神经网络的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(3): 34-47. |
| [12] | 李泽慧, 张琳, 山显英. 三维卷积神经网络方法改进及其应用综述[J]. 计算机工程与应用, 2025, 61(3): 48-61. |
| [13] | 喻云虎, 杨湘, 陈艳红. 嵌入导联上下文编码的图卷积神经网络心律失常分类模型[J]. 计算机工程与应用, 2025, 61(3): 212-222. |
| [14] | 李志媛, 刘祎, 张鹏程, 张丽媛, 任时磊, 芦婧, 桂志国. AWTV和高斯注意力引导的LDCT图像去噪网络[J]. 计算机工程与应用, 2025, 61(3): 253-263. |
| [15] | 冯星宇, 朱灵龙, 张永宏, 阚希, 曹海啸, 马光义. 基于多边特征引导聚合网络的变化检测算法[J]. 计算机工程与应用, 2025, 61(3): 264-274. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||