[1] 李世雄. 基于机器视觉的铝塑膜表面缺陷检测技术研究[D]. 深圳: 深圳大学, 2020.
LI S X. Research on surface defect detection technology of aluminum plastic film based on machine vision[D]. Shenzhen: Shenzhen University, 2020.
[2] 林强, 邬依林, 倪君仪, 等. 基于随机森林的锂电池电极缺陷粗细分类法[J]. 广东技术师范大学学报, 2022, 43(6): 72-77.
LIN Q, WU Y L, NI J Y, et al. A coarse and fine classification method for surface defects of lithium battery electrodes based on random forest[J]. Journal of Guangdong Polytechnic Normal University, 2022, 43(6): 72-77.
[3] 鲁永帅, 唐英杰, 马鑫然, 等. 应用卷积神经网络的锂电池极片涂布缺陷分类[J]. 包装工程, 2022, 43(9): 231-238.
LU Y S, TANG Y J, MA X R, et al. Defect classification of lithium battery pole piece coating using convolutional neural network[J]. Packaging Engineering, 2022, 43(9): 231-238.
[4] CHEON S, LEE H K, KIM C O, et al. Convolutional neural network for wafer surface defect classification and the detection of unknown defect class[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 163-170.
[5] 田志新, 徐震, 茅健, 等. 基于多尺度特征融合的钢材表面缺陷分类方法[J]. 电子科技, 2024, 37(2): 87-94.
TIAN Z X, XU Z, MAO J, et al. Classification method of steel surface defects based on multi-scale feature fusion[J]. Electronic Science and Technology, 2024, 37(2): 87-94.
[6] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[J]. arXiv:2002.05709, 2020.
[7] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9726-9735.
[8] KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Dec 6-12, 2020. Red Hook, NY, USA: Curran Associates, 2020: 18661-18673.
[9] LIN Z, DU B L, ZHAO X M, et al. Surface defect detection method based on improved semisupervised multitask generative adversarial network[J]. Scientific Programming, 2022, 2022(1): 4481495.
[10] HU J H, YAN P, SU Y T, et al. A method for classification of surface defect on metal workpieces based on twin attention mechanism generative adversarial network[J]. IEEE Sensors Journal, 2021, 21(12): 13430-13441.
[11] AUSTIN J, JOHNSON D D, HO J, et al. Structured denoising diffusion models in discrete state-spaces[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates, 2024: 17981-17993.
[12] RAMESH A, DHARIWAL P, NICHOL A, et al. Hierarchical text-conditional image generation with CLIP latents[J]. arXiv:2204.06125, 2022.
[13] MUKHOPADHYAY S, GWILLIAM M, AGARWAL V, et al. Diffusion models beat GANs on image classification[J]. arXiv:2307.08702, 2023.
[14] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Dec 6-12, 2020. Red Hook, NY, USA: Curran Associates, 2020: 6840-6851.
[15] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the International Conference on Medical Image Computing and Computer?Assisted Intervention. Cham: Springer, 2015: 234-241.
[16] DHARIWAL P, NICHOL A. Diffusion models beat GANs on image synthesis[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates, 2024: 8780-8794.
[17] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1103-1114.
[18] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2247-2256.
[19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[20] KORNBLITH S, NOROUZI M, LEE H, et al. Similarity of neural network representations revisited[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019. San Diego, USA: PMLR, 2019: 3519-3529. |