[1] 罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039.
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. Scientia Sinica (Informationis), 2022, 52(6): 1002-1039.
[2] 孙海丽, 龙翔, 韩兰胜, 等. 工业物联网异常检测技术综述[J]. 通信学报, 2022, 43(3): 196-210.
SUN H L, LONG X, HAN L S, et al. Overview of anomaly detection techniques for industrial Internet of Things[J]. Journal on Communications, 2022, 43(3): 196-210.
[3] 马天雨, 刘思亚, 刘金平, 等. 基于多电流特征形态组合模式挖掘的层冷辊电机故障诊断[J]. 电子学报, 2023, 51(4): 870-878.
MA T Y, LIU S Y, LIU J P, et al. Fault diagnosis of laminar cooling roller motor based on morphological combination patterns mining of multi-current features[J]. Acta Electronica Sinica, 2023, 51(4): 870-878.
[4] LIANG Q, XIANG S, LONG J, et al. Automatic defect inspection system for beer bottles based on deep residual learning[J]. International Journal of Computational Vision and Robotics, 2021, 11(3): 299-314.
[5] ZHANG T, DING B, ZHAO X, et al. LearningADD: machine learning based acoustic defect detection in factory automation[J]. Journal of Manufacturing Systems, 2021, 60: 48-58.
[6] HUANG B, MA S L, WANG P, et al. Research and implementation of machine vision technologies for empty bottle inspection systems[J]. Engineering Science and Technology, an International Journal, 2018, 21(1): 159-169.
[7] 唐伟. 声学缺陷检测中关键技术的研究[D]. 天津: 天津大学, 2018.
TANG W. Research on key technology of acoustic defect detection[D]. Tianjin: Tianjin University, 2018.
[8] 黎牧星, 黄志鸿. 基于极限学习机的玻璃瓶口缺陷检测方法研究[J]. 计算技术与自动化, 2016, 35(4): 117-120.
LI M X, HUANG Z H. Research on beer bottle defect detection method based on extreme learning machine[J]. Computing Technology and Automation, 2016, 35(4): 117-120.
[9] ZHAO X, CAO Y H, ZHANG T, et al. An improve feature selection algorithm for defect detection of glass bottles[J]. Applied Acoustics, 2021, 174: 107794.
[10] WANG Y W, FENG L Z, ZHU J M. Novel artificial bee colony based feature selection method for filtering redundant information[J]. Applied Intelligence, 2018, 48(4): 868-885.
[11] MNASRI Z, ROVETTA S, MASULLI F. Anomalous sound event detection: a survey of machine learning based methods and applications[J]. Multimedia Tools and Applications, 2022, 81(4): 5537-5586.
[12] 李伟红, 王伟冰, 龚卫国. 低信噪比下公共场所异常声音声学特征提取[J]. 声学学报, 2019, 44(5): 934-944.
LI W H, WANG W B, GONG W G. Acoustic features extraction of abnormal sounds in public places with low signal-to-noise ratio[J]. Acta Acustica, 2019, 44(5): 934-944.
[13] 陈秋菊, 徐建国. 优化正交匹配追踪和短时谱估计用于声音识别[J]. 计算机工程与应用, 2020, 56(7): 162-169.
CHEN Q J, XU J G. Optimized orthogonal matching pursuit and short-time spectrum estimation for sound recognition[J]. Computer Engineering and Applications, 2020, 56(7): 162-169.
[14] 许春冬, 刘昊, 闵源, 等. 基于双重注意力的声音事件定位与检测[J]. 计算机工程与应用, 2023, 59(19): 99-105.
XU C D, LIU H, MIN Y, et al. Sound event localization and detection based on dual attention[J]. Computer Engineering and Applications, 2023, 59(19): 99-105.
[15] BAI J S, CHEN J F, WANG M, et al. SSDPT: self-supervised dual-path transformer for anomalous sound detection[J]. Digital Signal Processing, 2023, 135: 103939.
[16] BAI J S, WANG M, CHEN J F. Dual-path transformer for machine condition monitoring[C]//Proceedings of the 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Piscataway: IEEE, 2021: 1144-1148.
[17] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[18] GULATI A, QIN J, CHIU C C, et al. Conformer: convolution-augmented transformer for speech recognition[C]//Proceedings of the Interspeech 2020, 2020: 5036-5040.
[19] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[21] XU J J, SUN X, ZHANG Z Y, et al. Understanding and improving layer normalization[C]//Proceedings of the Neural Information Processing Systems, 2019.
[22] FITZGERALD D. Harmonic/percussive separation using Median filtering[C]//Proceedings of the 13th International Conference on Digital Audio Effects, 2010.
[23] PARK D S, CHAN W, ZHANG Y, et al. SpecAugment: a simple data augmentation method for automatic speech recognition[C]//Proceedings of the Interspeech 2019, 2019: 2613-2617.
[24] ZHANG H Y, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[J]. arXiv:1710.09412,2017. |