计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (21): 234-241.DOI: 10.3778/j.issn.1002-8331.2408-0401

• 模式识别与人工智能 • 上一篇    下一篇

基于注意力机制的酒瓶裂纹敲击异常声音检测系统

王谋,白吉生,黄思维,李茁,刘鑫,杨飞然,王子腾   

  1. 1.OPPO广东移动通信有限公司,北京 100084
    2.中国科学院 声学研究所 噪声与振动重点实验室,北京 100190
    3.西北工业大学 航海学院,西安 710072
    4.中国电子科技集团 第三十四研究所,广西 桂林 541004
  • 出版日期:2025-11-01 发布日期:2025-10-31

Attention Mechanism Based Anomalous Knocking Sound Detection System for Wine Bottle Crack

WANG Mou, BAI Jisheng, HUANG Siwei, LI Zhuo, LIU Xin, YANG Feiran, WANG Ziteng   

  1. 1.Guangdong OPPO Mobile Telecommunications Co., Ltd., Beijing 100084, China
    2.Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
    3.School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
    4.The 34th Research Institute of China Electronics Technology Group Corporation, Guilin, Guangxi 541004, China
  • Online:2025-11-01 Published:2025-10-31

摘要: 酒类罐装生产线中,酒瓶缺陷的自动准确检测可以减少生产线的成本并降低安全隐患。传统的基于机器视觉酒瓶缺陷检测方法由于玻璃瓶缺陷细微且易反光等原因,检测准确率和效率仍有待提升。针对上述问题,提出一种基于注意力机制的酒瓶裂纹敲击异常声音检测系统。该方法引入了Squeeze-and-Excitation和自注意力的两种注意力机制模块构建网络,强化特征通道间的动态、非线性关系及提高模型从声学特征中同步捕捉到全局和局部信息的能力。同时,引入一种基于合成少数过采样技术的酒瓶敲击声数据扩增方法来合成样本,用于解决训练样本不足且类别不平衡的问题。提出的方法在iFLYTEK A.I.开发者大赛——酒瓶瓶体裂纹敲击检测挑战赛取得了0.989?88的加权得分,并排名第一。

关键词: 卷积神经网络, 注意力机制, 数据过采样, 异常声音检测

Abstract: Automatic and accurate detection of wine bottle defects in the liquor canning production line can reduce production costs and mitigate safety hazards. Due to the subtle nature and reflective properties of glass bottle defects, there is significant room for improving the accuracy and efficiency of machine vision-based wine bottle defect detection methods. To address these issues, this paper proposes an attention and data over-sampling-based system for detecting anomalous knocking sound of wine bottle cracks. This approach introduces two attention mechanism modules: Squeeze-and-Excitation and Conformer, to construct the network structure. These modules enhance the dynamic and non-linear relationships between feature channels and improve the ability to capture global and local information from acoustic features. Additionally, this paper introduces a data augmentation method based on synthetic minority over-sampling technique (SMOTE) to address the issues of insufficient training samples and class imbalance. The proposed method achieves a score of 0.989?88 and ranked first on the public test set of the iFLYTEK A.I. developer competition-wine bottle crack detection challenge.

Key words: convolutional neural network, attention mechanism, data over-sampling, anomalous sound detection