计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (2): 327-334.DOI: 10.3778/j.issn.1002-8331.2308-0422

• 工程与应用 • 上一篇    下一篇

基于FMF-YOLOv5的光伏组件红外图像故障诊断

张莉莉,王修晖   

  1. 中国计量大学 信息工程学院 浙江省电磁波信息技术与计量检测重点实验室,杭州 310018
  • 出版日期:2025-01-15 发布日期:2025-01-15

Infrared Image Fault Diagnosis of Photovoltaic Modules Based on FMF-YOLOv5

ZHANG Lili, WANG Xiuhui   

  1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
  • Online:2025-01-15 Published:2025-01-15

摘要: 针对红外图像对比度较低、故障特征不明显的问题,提出全新的融合注意力机制(fusion attention mechanism,FAM),增强有效故障特征信息。创建新的融合金字塔池化(fusion spatial pyramid pooling,FSPP),增强特征提取能力。引入一种改进多层次融合卷积(multi-level fusion convolution,MFConv),利用MFConv构建的多层次跨阶段局部网络(multi-level cross stage partial network,MCSP)模块代替CSP模块,在提高少量模型参数量情况下,增加模型检测准确性。实验结果表明,在IoU阈值为0.5的情况下,该方法的平均精度(mAP)达到了93.1%。为光伏系统提供了可靠、高效的故障检测解决方案,从而使其成为提高系统性能和降低维护费用的实用解决方案。

关键词: 目标检测, 光伏故障, 特征融合, 融合注意力

Abstract: Aiming at the problems of low contrast of infrared image and not obvious fault characteristics, the paper firstly proposes a new fusion attention mechanism (FAM) to focus on important fault characteristics. Secondly, a new fusion spatial pyramid pooling (FSPP) is created to enhance feature extraction capabilities. Finally, a new multi-level fusion convolution (MFConv) is introduced, and a multi-level cross stage partial network is built by using MFConv. The MCSP module replaces the CSP module to maintain accuracy while increasing the number of model parameters with a small amount. The experimental results show that the average accuracy (mAP) of the proposed method reaches 93.1% when the IoU threshold is 0.5. This method provides a reliable and efficient fault detection solution for photovoltaic systems, making it a practical solution to improve system performance and reduce maintenance costs.

Key words: object detection, photovoltaic failure, feature fusion, fusion attention