[1] MADETI S R, SINGH S N. Monitoring system for photovoltaic plants: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 1180-1207.
[2] SINGH G K. Solar power generation by PV (photovoltaic) technology: a review[J]. Energy, 2013, 53: 1-13.
[3] ALAJMI M, AWEDAT K, ALDEEN M S, et al. IR thermal image analysis: an efficient algorithm for accurate hot-spot fault detection and localization in solar photovoltaic systems[C]//Proceedings of the 2019 IEEE International Conference on Electro Information Technology, 2019: 162-168.
[4] AKRAM M W, LI G, JIN Y, et al. Failures of photovoltaic modules and their detection: a review[J]. Applied Energy, 2022, 313: 118822.
[5] ZENG C, YE J, WANG Z, et al. Cascade neural network-based joint sampling and reconstruction for image compressed sensing[J]. Signal, Image and Video Processing, 2022, 16(1): 47-54.
[6] GUERRIERO P, CUOZZO G, DALIENTO S. Health diagnostics of PV panels by means of single cell analysis of thermographic images[C]//Proceedings of the 2016 IEEE 16th International Conference on Environment and Electrical Engineering, 2016: 1-6.
[7] WANG Z, WANG Z, ZENG C, et al. High-quality image compressed sensing and reconstruction with multi-scale dilated convolutional neural network[J]. Circuits, Systems, and Signal Processing, 2023, 42(3): 1593-1616.
[8] RAHMAN M M, KHAN I, ALAMEH K. Potential measurement techniques for photovoltaic module failure diagnosis: a review[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111532.
[9] MELLIT A, KALOGIROU S. Assessment of machine learning and ensemble methods for fault diagnosis of photovoltaic systems[J]. Renewable Energy, 2022, 184: 1074-1090.
[10] ABDULMAWJOOD K, REFAAT S, MORSI W. Detection and prediction of faults in photovoltaic arrays: a review[C]//Proceedings of the 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering, 2018: 1-8.
[11] JIANG P, ERGU D, LIU F, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
[12] LYU L, WANG Z, YUN H, et al. Deep knowledge tracing based on spatial and temporal representation learning for learning performance prediction[J]. Applied Sciences, 2022, 12(14): 7188.
[13] MANTEL C, VILLEBRO F, BENATTO D R G A, et al. Machine learning prediction of defect types for electroluminescence images of photovoltaic panels[C]//Proceedings of the SPIE, 2019.
[14] WANG Z, ZUO C, ZENG C. SAE based unified double JPEG compression detection system for Web image forensics[J]. International Journal of Web Information Systems, 2021, 17(2): 84-98.
[15] WU W, LIU H, LI L, et al. Application of local fully convolutional neural network combined with YOLOv5 algorithm in small target detection of remote sensing image[J]. PloS One, 2021, 16(10): 259283.
[16] FU X, LI A, MENG Z, et al. A dynamic detection method for phenotyping pods in a soybean population based on an improved YOLOv5 network[J]. Agronomy, 2022, 12(12): 3209.
[17] REN Y, YU Y, LI J, et al. Design of photovoltaic hot spot detection system based on deep learning[J]. Journal of Physics: Conference Series, 2020, 1693(1): 12075.
[18] WANG Y, SHEN L X, LI M H, et al. PV-YOLO: lightweight YOLO for photovoltaic panel fault detection[J]. IEEE Access, 2023, 11: 10966-10976.
[19] LI L, WANG Z, ZHANG T. GBH-YOLOv5: ghost convolution with bottleneckCSP and tiny target prediction head incorporating YOLOv5 for PV panel defect detection[J]. Electronics, 2023, 12(3): 561.
[20] ZHANG M, YIN L. Solar cell surface defect detection based on improved YOLOv5[J]. IEEE Access, 2022, 10: 80804-80815.
[21] JIANG L, LIU H, ZHU H, et al. Improved YOLOv5 with balanced feature pyramid and attention module for traffic sign detection[C]//Proceedings of the 2021 International Conference on Physics, Computing and Mathematical, 2022.
[22] XUE Z, XU R, BAI D, et al. YOLO-tea: a tea disease detection model improved by YOLOv5[J]. Forests, 2023, 14(2): 415.
[23] XU X, ZHANG X, ZHANG T. Lite-YOLOv5: a lightweight deep learning detector for on-board ship detection in large-scene sentinel-1 SAR images[J]. Remote Sensing, 2022, 14(4): 1018.
[24] XUE Z, LIN H, WANG F. A small target forest fire detection model based on YOLOv5 improvement[J]. Forests, 2022, 13(8): 1332.
[25] LUO S, YU J, XI Y, et al. Aircraft target detection in remote sensing images based on improved YOLOv5[J]. IEEE Access, 2022, 10: 5184-5192.
[26] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[27] TANG H, LIANG S, YAO D, et al. A visual defect detection for optics lens based on the YOLOv5-C3CA-SPPF network model[J]. Optics Express, 2023, 31(2): 2628-2643.
[28] CAO M, FU H, ZHU J, et al. Lightweight tea bud recognition network integrating GhostNet and YOLOv5[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 12897-12914.
[29] MAZEN F M A, SEOUD R A A, SHAKER Y. Deep learning for automatic defect detection in PV modules using electroluminescence images[J]. IEEE Access, 2023, 11: 57783-57795.
[30] 胡皓, 郭放, 刘钊. 改进 YOLOX-S 模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101.
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101.
[31] 苏俊楷, 段先华, 叶赵兵. 改进 YOLOv5 算法的玉米病害检测研究[J]. 计算机科学与探索, 2023, 17(4): 933-941.
SU J K, DUAN X H, YE Z B. Research on crn disease detection based on improved YOLOv5 algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 933-941.
[32] 赵振兵, 王帆帆, 刘良帅, 等. 基于注意力特征融合YOLOv5模型的无人机输电线路航拍图像金具检测方法[J]. 电测与仪表, 2023, 60(3): 145-152.
ZHAO Z B, WANG F F, LIU L S, et al. Hardware detection method of aerial image of UAV transmission line based on attention feature fusion YOLOv5 model[J]. Electrical Measurement & Instrumentation, 2023, 60(3): 145-152.
[33] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision , 2018: 3-19.
[34] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[35] HUANG G, LIU Z, MAATEN V D , et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[36] LI H, LI J, WEI H, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[J]. arXiv:2206.02424,2022. |