[1] POLYAK B T. Newton’s method and its use in optimization[J]. European Journal of Operational Research, 2007, 181(3): 1086-1096.
[2] CARMON Y, DUCHI J C, HINDER O, et al. Accelerated methods for NonConvex optimization[J]. SIAM Journal on Optimization, 2018, 28(2): 1751-1772.
[3] HU W, ZHANG Q, YE S. An enhanced dung beetle optimizer with multiple strategies for robot path planning[J]. Scientific Reports, 2025, 15(1): 4655.
[4] 许家昌, 江琳, 苏树智. 融合组织P系统的自适应t分布蜣螂算法[J]. 计算机工程与应用, 2025, 61(4): 99-113.
XU J C, JIANG L, SU S Z. Fusion of adaptive t-distribution dung beetle optimizer algorithm with tissue P system[J]. Computer Engineering and Applications, 2025, 61(4): 99-113.
[5] 刘一格, 赵振宙, 马远卓, 等. 基于鲸鱼优化算法的串列风力机主动尾流控制策略[J]. 中国电机工程学报, 2024, 44(9): 3702-3710.
LIU Y G, ZHAO Z Z, MA Y Z, et al. Active wake control strategy of tandem wind turbines based on whale optimization algorithm[J]. Proceedings of the CSEE, 2024, 44(9): 3702-3710.
[6] DEHGHANI M, TROJOVSKY P. Osprey optimization algorithm: a new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J]. Frontiers in Mechanical Engineering, 2023, 8: 1126450.
[7] ISMAEEL A A K, HOUSSEIN E H, KHAFAGA D S, et al. Performance of osprey optimization algorithm for solving economic load dispatch problem[J]. Mathematics, 2023, 11(19): 4107.
[8] GAO Y, CAO B F, YU W H, et al. Short-term wind speed prediction for bridge site area based on wavelet denoising OOA-transformer[J]. Mathematics, 2024, 12(12): 1910.
[9] WEN X D, LIU X D, YU C H, et al. IOOA: a multi-strategy fusion improved osprey optimization algorithm for global optimization[J]. Electronic Research Archive, 2024, 32(3): 2033-2074.
[10] WEI F T, SHI X, FENG Y. Improved osprey optimization algorithm based on two-color complementary mechanism for global optimization and engineering problems[J]. Biomimetics, 2024, 9(8): 486.
[11] YAO B Y, CHAO L, ASADI M, et al. Modified osprey algorithm for optimizing capsule neural network in leukemia image recognition[J]. Scientific Reports, 2024, 14(1): 15402.
[12] 岑哲, 符强, 童楠. 基于自适应鱼鹰优化算法的无人机路径规划[J]. 电光与控制, 2024, 31(11): 26-33.
CEN Z, FU Q, TONG N. UAV path planning based on adaptive osprey optimization algorithm[J]. Electronics Optics & Control, 2024, 31(11): 26-33.
[13] 罗潇远, 刘杰, 杨斌, 等. 基于改进鱼鹰优化算法与VMD-LSTM的超短期风电功率预测[J]. 太阳能学报, 2025, 46(3): 652-660.
LUO X Y, LIU J, YANG B, et al. Ultra short-term wind power prediction based on improved ospery optimization algorithm and vmd-lstm[J]. Acta Energiae Solaris Sinica, 2025, 46(3): 652-660.
[14] ZHOU L P, LIU X, TIAN R Q, et al. A modified osprey optimization algorithm for solving global optimization and engineering optimization design problems[J]. Symmetry, 2024, 16(9): 1173.
[15] FERAHTIA S, HOUARI A, REZK H, et al. Red-tailed hawk algorithm for numerical optimization and real-world problems[J]. Scientific Reports, 2023, 13(1): 12950.
[16] 陈雪芬, 叶春明. 基于非线性收敛因子和标杆管理的改进教与学优化算法[J]. 上海理工大学学报, 2022, 44(5): 508-518.
CHEN X F, YE C M. Modified teaching-learning-based optimization algorithm based on the nonlinear convergence factor and benchmarking management[J]. Journal of University of Shanghai for Science and Technology, 2022, 44(5): 508-518.
[17] 向海昀, 李鸿鑫, 符晓, 等. 基于多策略的改进蜜獾算法及其应用[J]. 计算机工程, 2023, 49(12): 78-87.
XIANG H Y, LI H X, FU X, et al. Improved honey badger algorithm based on multi?strategy and its applications[J]. Computer Engineering, 2023, 49(12): 78-87.
[18] WANG Z H, MO Y B, CUI M Y, et al. An improved golden jackal optimization for multilevel thresholding image segmentation[J]. PLoS One, 2023, 18(5): e0285211.
[19] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336.
[20] AHMAD RATHER S, BALA P S. Constriction coefficient based particle swarm optimization and gravitational search algorithm for multilevel image thresholding[J]. Expert Systems, 2021, 38(7): e12717.
[21] LONG W, CAI S H, JIAO J J, et al. A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models[J]. Energy Conversion and Management, 2020, 203: 112243.
[22] HU G, ZHONG J Y, WEI G. SaCHBA_PDN: modified honey badger algorithm with multi-strategy for UAV path planning[J]. Expert Systems with Applications, 2023, 223: 119941.
[23] NAIK M K, PANDA R, ABRAHAM A. Adaptive opposition slime mould algorithm[J]. Soft Computing, 2021, 25(22): 14297-14313.
[24] NAIK M K, PANDA R, WUNNAVA A, et al. A leader Harris Hawks optimization for 2-D Masi entropy-based multilevel image thresholding[J]. Multimedia Tools and Applications, 2021, 80(28): 35543-35583.
[25] DERRAC J, GARCíA S, MOLINA D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm and Evolutionary Computation, 2011, 1(1): 3-18.
[26] 吴迪, 贾鹤鸣, 刘庆鑫, 等. 融合经验反思机制的教与学优化算法[J]. 智能系统学报, 2023, 18(3): 629-641.
WU D, JIA H M, LIU Q X, et al. Teaching and learning optimization algorithm based on empirical reflection mechanism[J]. CAAI Transactions on Intelligent Systems, 2023, 18(3): 629-641.
[27] YAO L G, YANG J, YUAN P L, et al. Multi-strategy improved sand cat swarm optimization: global optimization and feature selection[J]. Biomimetics, 2023, 8(6): 492.
[28] KUMAR A, WU G H, ALI M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J]. Swarm and Evolutionary Computation, 2020, 56: 100693.
[29] MANSOR M A, MORRIS A S. Path planning in unknown environment with obstacles using virtual window[J]. Journal of Intelligent and Robotic Systems, 1999, 24(3): 235-251.
[30] 白宇鑫, 陈振亚, 石瑞涛, 等. 基于改进哈里斯鹰算法的机器人路径规划研究[J]. 系统仿真学报, 2025, 37(3): 742-752.
BAI Y X, CHEN Z Y, SHI R T, et al. Research on robot path planning based on improved Harris Hawks algorithm[J]. Journal of System Simulation, 2025, 37(3): 742-752. |