[1] ZHENG Y J. Water wave optimization: a new nature-inspired metaheuristic[J]. Computers & Operations Research, 2015, 55: 1-11.
[2] 陈丽芳, 曹柯欣, 张思鹏, 等. 群智能优化算法最新进展[J]. 计算机工程与应用, 2024, 60(19): 46-67.
CHEN L F, CAO K X, ZHANG S P, et al. Recent progress of swarm intelligent optimization algorithms[J]. Computer Engineering and Applications, 2024, 60(19): 46-67.
[3] 柴岩, 常晓萌, 任生. 融合多策略改进的白鲸优化算法[J]. 计算机工程与应用, 2025, 61(5): 76-93.
CHAI Y, CHANG X M, REN S. Beluga whale optimization with improved multi-strategy integration problem[J]. Computer Engineering and Applications, 2025, 61(5): 76-93.
[4] 戴春雨, 马廉洁, 蒋涵存, 等. 基于多种策略改进的鲸鱼优化算法[J]. 计算机工程与科学, 2024, 46(9): 1635-1647.
DAI C Y, MA L J, JIANG H C, et al. An improved whale optimization algorithm based on multiple strategies[J]. Computer Engineering & Science, 2024, 46(9): 1635-1647.
[5] DENG H J, LIU L N, FANG J Y, et al. A novel improved whale optimization algorithm for optimization problems with multi-strategy and hybrid algorithm[J]. Mathematics and Computers in Simulation, 2023, 205: 794-817.
[6] 程彦琳, 李书琴. 基于混沌映射和莱维飞行扰动的蛇形优化算法[J]. 计算机工程与设计, 2024, 45(9): 2658-2668.
CHENG Y L, LI S Q. Snake optimization algorithm based on chaotic reverse and Levy flight[J]. Computer Engineering and Design, 2024, 45(9): 2658-2668.
[7] 冯增喜, 李嘉乐, 葛珣, 等. 融合多策略改进鲸鱼优化算法及其应用[J]. 计算机集成制造系统, 2025, 31(2): 590-603.
FENG Z X, LI J L, GE X, et al. Integrating multi-strategy improved whale optimization algorithm and its application[J]. Computer Integrated Manufacturing Systems, 2025, 31(2): 590-603.
[8] 李江华, 王鹏晖, 李伟. 一种混合多策略改进的麻雀搜索算法[J]. 计算机工程与科学, 2024, 46(2): 303-315.
LI J H, WANG P H, LI W. A hybrid multi-strategy improved sparrow search algorithm[J]. Computer Engineering & Science, 2024, 46(2): 303-315.
[9] 潘劲成, 李少波, 周鹏, 等. 改进正弦算法引导的蜣螂优化算法[J]. 计算机工程与应用, 2023, 59(22):92-110.
PAN J C , LI S B , ZHOU P, et al. Dung beetle optimization algorithm guided by improved sine algorithm[J]. Computer Engineering and Applications, 2023, 59(22): 92-110.
[10] 赵倩, 郭锋, 王婷, 等. 融合多策略改进红尾鹰优化算法及其应用[J]. 计算机技术与发展, 2025, 35(1): 140-147.
ZHAO Q, GUO F, WANG T, et al. Improved red-tailed hawk optimizer integrating multiple strategies and its applications[J]. Computer Technology and Development, 2025, 35(1): 140-147.
[11] LIU Q, LI N, JIA H, et al . Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation[J]. Mathematics, 2022, 10(7):1014.
[12] 力尚龙, 刘建华, 贾鹤鸣. 融合多狩猎协调策略的爬行动物搜索算法[J]. 计算机应用, 2024, 44(9): 2818-2828.
LI S L, LIU J H, JIA H M. Reptile search algorithm based on multi-hunting coordination strategy[J]. Journal of Computer Applications, 2024, 44(9): 2818-2828.
[13] WANG X L, ZHAN L Y, ZHANG Y, et al. Environmental cold chain distribution center location model in the semiconductor supply chain: a hybrid arithmetic whale optimization algorithm[J]. Computers & Industrial Engineering, 2024, 187: 109773.
[14] 任庆欣, 冯锋. 多策略融合改进的斑马优化算法[J]. 计算机科学, 2024, 51(S2):46-52.
REN Q X, FENG F. Zebra optimization algorithm improved by multi-strategy fusion[J]. Computer Science, 2024, 51(S2):46-52.
[15] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway: IEEE, 1995: 39-43.
[16] ABDEL-BASSET M, EL-SHAHAT D, JAMEEL M, et al. Young’s double-slit experiment optimizer: a novel metaheuristic optimization algorithm for global and constraint optimization problems[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 403: 115652.
[17] HE J H, ZHAO S J, DING J Y, et al. Mirage search optimization: application to path planning and engineering design problems[J]. Advances in Engineering Software, 2025, 203: 103883.
[18] TIAN A Q, LIU F F, LV H X. Snow geese algorithm: a novel migration-inspired meta-heuristic algorithm for constrained engineering optimization problems[J]. Applied Mathematical Modelling, 2024, 126: 327-347.
[19] XIONG Y, ZOU Z M, CHENG J T. Cuckoo search algorithm based on cloud model and its application[J]. Scientific Reports, 2023, 13: 10098.
[20] 陈峰, 丁泉, 吴乐, 等. 混合驱动的粒子群算法[J]. 计算机工程与应用, 2024, 60(8): 78-89.
CHEN F, DING Q, WU L, et al. Hybrid driven particle swarm algorithm[J]. Computer Engineering and Applications, 2024, 60(8): 78-89.
[21] 郭晓金, 郭彩杏, 柏林江. 采用半初始化和概率扰动策略改进的遗传算法[J]. 计算机应用研究, 2019, 36(12): 3670-3673.
GUO X J, GUO C X, BAI L J. Improved genetic algorithm using semi-initialization and probabilistic disturbance strategy[J]. Application Research of Computers, 2019, 36(12): 3670-3673.
[22] 雍龙泉, 刘三阳. 单纯形法的复杂性与计算效率[J]. 高等数学研究, 2024, 27(3): 50-52.
YONG L Q, LIU S Y. Complexity and computational efficiency of simplex method[J]. Studies in College Mathematics, 2024, 27(3): 50-52.
[23] YAO L G, YANG J, YUAN P L, et al. Multi-strategy improved sand cat swarm optimization: global optimization and feature selection[J]. Biomimetics, 2023, 8(6): 492.
[24] 李奕轩, 田云娜, 王凯欣. 多策略改进的鱼鹰优化算法及其应用[J]. 计算机技术与发展, 2025, 35(1): 132-139.
LI Y X, TIAN Y N, WANG K X. Improved osprey optimization algorithm based on multiple strategies and its application[J]. Computer Technology and Development, 2025, 35(1): 132-139.
[25] 柴岩, 任生. 多策略协同优化的改进HHO算法[J]. 计算机应用研究, 2022, 39(12): 3658-3666.
CHAI Y, REN S. Improved HHO algorithm based on multi-strategy cooperative optimization[J]. Application Research of Computers, 2022, 39(12): 3658-3666.
[26] LIU M, YAO X F, LI Y X. Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems[J]. Applied Soft Computing, 2020, 87: 105954.
[27] YANG W B, XIA K W, FAN S R, et al. A multi-strategy whale optimization algorithm and its application[J]. Engineering Applications of Artificial Intelligence, 2022, 108: 104558.
[28] KUMAR A, WU G H, ALI M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J]. Swarm and Evolutionary Computation, 2020, 56: 100693.
[29] 张鹏, 莫仕茵, 曹卿. 基于机器学习的多目标投资组合优化研究[J]. 华南师范大学学报(自然科学版), 2024, 56(4): 100-110.
ZHANG P, MO S Y, CAO Q. Multi-objective portfolio selection based on machine learning[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(4): 100-110.
[30] LIANG Z Y, LI Y F, WAN Z W. Large scale many-objective optimization driven by distributional adversarial networks[J]. arXiv:2003.07013, 2020.
[31] 邓雪, 方雯. 改进的人工蜂群算法在投资组合中的应用研究[J]. 数学的实践与认识, 2023, 53(8): 1-12.
DENG X, FANG W. Application research on improved artificial bee colony algorithms in portfolio selection[J]. Mathematics in Practice and Theory, 2023, 53(8): 1-12.
[32] 刘宇馨. 群体智能算法在投资组合中的应用[J]. 信息系统工程, 2023(11): 78-81.
LIU Y X. Application of swarm intelligence algorithm in portfolio selection[J]. China CIO News, 2023(11): 78-81.
[33] SONG Y J, CAI X, ZHOU X B, et al. Dynamic hybrid mechanism-based differential evolution algorithm and its application[J]. Expert Systems with Applications, 2023, 213: 118834.
[34] 徐邦玺. 基于遗传算法和CVaR实现投资组合优化[J]. 经济研究导刊, 2024(13): 71-74.
XU B X. Portfolio optimization based on genetic algorithm and CVaR[J]. Economic Research Guide, 2024(13): 71-74. |