计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 99-113.DOI: 10.3778/j.issn.1002-8331.2502-0085

• 理论与研发 • 上一篇    下一篇

多策略改进的水波优化算法及其应用

王玉芳,裴晓红,闫明   

  1. 1.天津财经大学 统计学院,天津 300221 
    2.天津财经大学 管理科学与工程学院,天津 300221
  • 出版日期:2025-09-15 发布日期:2025-09-15

Multi-Strategy Improved Water Wave Optimization Algorithm and Its Application

WANG Yufang, PEI Xiaohong, YAN Ming   

  1. 1.School of Statistics, Tianjin University of Finance and Economics, Tianjin 300221, China
    2.School of Management Science and Engineering, Tianjin University of Finance and Economics, Tianjin 300221, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 针对水波优化算法(water wave optimization,WWO)存在的收敛精度不足及易于陷入局部最优等问题,提出了一种融合多策略的水波优化改进算法(multi-strategy enhanced water wave optimization,MSWWO)。在算法的传播阶段引入种群间相互作用策略,实现种群内的信息交流,提高算法的收敛精度和稳定性;设计一个概率扰动参数,当随机数小于概率扰动参数时,替代原算法中折射的位置更新机制,使个体的新位置将随机地在搜索空间范围内确定,避免迭代后期种群多样性减少;对适应度最差的个体采用复形法的反射操作,旨在提升算法规避局部最优陷阱的能力。通过采用30维及固定维度的标准测试函数以及CEC2019复杂函数进行仿真实验,分别探究了三个改进策略对算法的探索与开发的影响、对种群多样性的影响以及对算法收敛性的影响。对改进后的算法MSWWO与对比算法进行了收敛性分析,并实施了Wilcoxon秩和检验,结果证实了MSWWO在收敛性能及鲁棒性方面具有更优的表现。此外,将MSWWO应用在投资组合优化问题的求解上,验证了MSWWO在求解实际问题中的有效性和可靠性。

关键词: 水波优化算法, 种群间相互作用策略, 概率扰动策略, 复形法, 投资组合优化

Abstract: A multi-strategy improved water wave optimization is settled to address the issues of low convergence accuracy and susceptibility to local optima in water wave optimization (WWO). In the propagation stage of the algorithm, an inter population interaction strategy is introduced to achieve information exchange within the population, thereby improving the convergence accuracy and stability of the algorithm. This paper designs a probability perturbation parameter that replaces the position update mechanism refracted in the original algorithm when the random number is less than the probability perturbation parameter, so that the new position of the individual will be randomly determined within the search space range, avoiding a decrease in population diversity in the later stages of iteration. The reflection operation of the complex method is applied to the individuals with the worst fitness to improve the ability of algorithm to escape from local optima. The simulation experiment is based on 30 dimensional and fixed dimensional test functions. At the same time, convergence analysis and Wilcoxon test are conducted on the MSWWO and the other algorithm, proving that MSWWO has better convergence performance and robustness. The application of MSWWO in solving portfolio optimization problems has verified its effectiveness and reliability in solving practical problems.

Key words: water wave optimization algorithm, inter population interaction strategy, probability perturbation strategy, complex method, portfolio optimization