[1] QI C R, LIU W, WU C X, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 918-927.
[2] MARCHAND E, UCHIYAMA H, SPINDLER F. Pose estimation for augmented reality: a hands-on survey[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 22(12): 2633-2651.
[3] SONG S R, XIAO J X. Deep sliding shapes for amodal 3D object detection in RGB-D images[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 808-816.
[4] YANG B, LUO W, URTASUN R. Pixor: real-time 3D object detection from point clouds[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7652-7660.
[5] MISRA I, GIRDHAR R, JOULIN A. An end-to-end transformer model for 3D object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 2886-2897.
[6] QI C R, LITANY O, HE K M, et al. Deep Hough voting for 3D object detection in point clouds[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9276-9285.
[7] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
[8] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems, 2017.
[9] XIE Q, LAI Y K, WU J, et al. VENet: voting enhancement network for 3D object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3692-3701.
[10] YANG D H, GAO W, LI G, et al. Exploiting manifold feature representation for efficient classification of 3D point clouds[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(1s): 1-21.
[11] MEIL? M, ZHANG H Y. Manifold learning: what, how, and why[J]. Annual Review of Statistics and Its Application, 2024, 11: 393-417.
[12] LIU Y C, FAN B, XIANG S M, et al. Relation-shape convolutional neural network for point cloud analysis[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8887-8896.
[13] 张冬冬, 郭杰, 陈阳. 基于原始点云的三维目标检测算法[J]. 计算机工程与应用, 2023, 59(3): 209-217.
ZHANG D D, GUO J, CHEN Y. 3D object detection algorithm based on raw point clouds[J]. Computer Engineering and Applications, 2023, 59(3): 209-217.
[14] DENG J J, SHI S S, LI P W, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 1201-1209.
[15] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4490-4499.
[16] GWAK J, CHOY C, SAVARESE S. Generative sparse detection networks for 3D single-shot object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 297-313.
[17] ZHANG Z W, SUN B, YANG H T, et al. H3DNet: 3D object detection using hybrid geometric primitives[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 311-329.
[18] XIE Q, LAI Y K, WU J, et al. MLCVNet: multi-level context VoteNet for 3D object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10444-10453.
[19] SHI S S, WANG X G, LI H S. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 770-779.
[20] CHEN J T, LEI B W, SONG Q Y, et al. A hierarchical graph network for 3D object detection on point clouds[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 389-398.
[21] YANG Y Q, FENG C, SHEN Y R, et al. FoldingNet: point cloud auto?encoder via deep grid deformation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 206-215.
[22] YANG Z T, SUN Y N, LIU S, et al. 3DSSD: point-based 3D single stage object detector[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11037-11045.
[23] ZHU Y, HUI L, SHEN Y Q, et al. SPGroup3D: superpoint grouping network for indoor 3D object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 7811-7819.
[24] CHEN Y J, XU F, CHEN G D, et al. Point cloud 3D object detection method based on density information?local feature fusion[J]. Multimedia Tools and Applications, 2024, 83(1): 2407-2425.
[25] SHU J, YU S Q, SHU X Y, et al. SOA: seed point offset attention for indoor 3D object detection in point clouds[J]. Computers & Graphics, 2024, 123: 103992.
[26] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[27] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[28] BELLO I, ZOPH B, LE Q, et al. Attention augmented convolutional networks[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3285-3294.
[29] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]///Proceedings of the European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[30] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12.
[31] YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5588-5597.
[32] FENG M T, GILANI S Z, WANG Y N, et al. Relation graph network for 3D object detection in point clouds[J]. IEEE Transactions on Image Processing, 2020, 30: 92-107.
[33] WANG Y, SOLOMON J M. Object DGCNN: 3D object detection using dynamic graphs[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 20745-20758.
[34] DONG S W, KONG X Y, PAN X J, et al. Semantic-context graph network for point-based 3D object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33(11): 6474-6486.
[35] ZHAO L C, GUO J Y, XU D, et al. Transformer3D-det: improving 3D object detection by vote refinement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(12): 4735-4746.
[36] SAUL L K, ROWEIS S T. An introduction to locally linear embedding[J]. Journal of Machine Learning Research, 2000.
[37] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2432-2443.
[38] SONG S R, LICHTENBERG S P, XIAO J X. SUN RGB-D: a RGB-D scene understanding benchmark suite[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 567-576.
[39] REN Z L, SUDDERTH E B. Three-dimensional object detection and layout prediction using clouds of oriented gradients[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1525-1533.
[40] LAHOUD J, GHANEM B. 2D-driven 3D object detection in RGB-D images[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4632-4640.
[41] DUAN Y, ZHU C Y, LAN Y Q, et al. DisARM: displacement aware relation module for 3D detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16959-16968.
[42] LI Z C, YU H S, YANG Z G, et al. AShapeFormer: semantics-guided object-level active shape encoding for 3D object detection via transformers[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1012-1021.
[43] YI L, ZHAO W, WANG H, et al. GSPN: generative shape proposal network for 3D instance segmentation in point cloud[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3942-3951.
[44] HOU J, DAI A, NIE?NER M. 3D-SIS: 3D semantic instance segmentation of RGB-D scans[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4416-4425.
[45] QI C R, CHEN X L, LITANY O, et al. ImVoteNet: boosting 3D object detection in point clouds with image votes[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4403-4412. |