[1] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[2] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[3] WANG G, CHEN Y, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors (Basel), 2023, 23(16): 7190.
[4] 苏佳, 秦一畅, 贾泽, 等. 基于ATO-YOLO的小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 68-77.
SU J, QIN Y C, JIA Z, et al. Small object detection algorithm based on ATO-YOLO[J]. Computer Engineering and Applications, 2024, 60(6): 68-77.
[5] CAI Z W, FAN Q F, FERIS R S, et al. A unified multi-scale deep convolutional neural network for fast object detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 354-370.
[6] ZHU Y S, ZHAO C Y, WANG J Q, et al. CoupleNet: coupling global structure with local parts for object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 4146-4154.
[7] LI Y J, LI S S, DU H H, et al. YOLO-ACN: focusing on small target and occluded object detection[J]. IEEE Access, 2020, 8: 227288-227303.
[8] LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//Proceedings of the International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2021: 181-186.
[9] KIM M, JEONG J, KIM S. ECAP-YOLO: efficient channel attention pyramid YOLO for small object detection in aerial image[J]. Remote Sensing, 2021, 13(23): 4851.
[10] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: impr-oved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2778-2788.
[11] 齐向明, 柴蕊, 高一萌. 重构SPPCSPC与优化下采样的小目标检测算法[J]. 计算机工程与应用, 2023, 59(20): 158-166.
QI X M, CHAI R, GAO Y M. Algorithm of reconstructed SPPCSPC and optimized downsampling for small object detection[J]. Computer Engineering and Applications, 2023, 59(20): 158-166.
[12] 董刚, 谢维成, 黄小龙, 等. 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59(11): 16-27.
DONG G, XIE W C, HUANG X L, et al. Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
[13] ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogn-ition. Piscataway: IEEE, 2020: 9756-9765.
[14] SUNKARA R, LUO T. No more strided convolutions or poo-ling: a new CNN building block forLow-resolution images andSmall objects[C]//Proceedings of the Machine Learning and Knowledge Discovery in Databases. Cham: Springer Nature Switzerland, 2023: 443-459.
[15] LEE Y, PARK J. CenterMask: real-time anchor-free instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 13903-13912.
[16] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[17] WU T, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2021, 30: 1169-1179.
[18] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision, 2018: 3-19.
[19] HUANG H, CHEN Z, ZOU Y, et al. Channel prior convolutional attention for medical image segmentation[J]. arXiv: 2306.05196, 2023.
[20] ZHANG H, XU C, ZHANG S. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[21] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[22] CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2847-2854.
[23] YU W P, YANG T, CHEN C. Towards resolving the challenge of long-tail distribution in UAV images for object detection[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3257-3266.
[24] ZHOU X, WANG D, KRAHENBUHL P. Objects as points[J]. arXiv:1904.07850, 2019.
[25] WANG L, SHI Y, MAO G J, et al. Consumer-centric insights into resilient small object detection: SCIoU loss and recursive transformer network[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 2178-2187.
[26] WU M J, YUN L J, WANG Y B, et al. Detection algorithm for dense small objects in high altitude image[J]. Digital Signal Processing, 2024, 146: 104390.
[27] SUI J C, CHEN D K, ZHENG X, et al. A new algorithm for small target detection from the perspective of unmanned aerial vehicles[J]. IEEE Access, 2024, 12: 29690-29697.
[28] TAHIR N U A, LONG Z, ZHANG Z P, et al. PVswin-YOLOv8s: UAV-based pedestrian and vehicle detection for traffic management in smart cities using improved YOLOv8[J]. Drones, 2024, 8(3): 84. |