[1] 肖美慧, 席明霞, 屈婧, 等. 全闭环输液监测系统在临床输液安全管理中的应用[J]. 护理学报, 2020, 27(3): 14-17.
XIAO M H, XI M X, QU J, et al. Application of closed-loop infusion monitoring system in safety management of clinical infusion[J]. Journal of Nursing (China), 2020, 27(3): 14-17.
[2] LANGILLE S E. Particulate matter in injectable drug products[J]. PDA Journal of Pharmaceutical Science and Technology, 2013, 67(3): 186-200.
[3] LI P H, LI Q C, LAI Y J, et al. Direct entry of micro(nano)plastics into human blood circulatory system by intravenous infusion[J]. iScience, 2023, 26(12): 108454.
[4] HUANG Z, PENCZEK P A. Application of template matching technique to particle detection in electron micrographs[J]. Journal of Structural Biology, 2004, 145(1/2): 29-40.
[5] ZHAN Y T, ZHANG G Y. An improved Otsu algorithm using histogram accumulation moment for ore segmentation[J]. Symmetry, 2019, 11(3): 431.
[6] WANG J Q, ZHANG L, LU F X, et al. The segmentation of wear particles in ferrograph images based on an improved ant colony algorithm[J]. Wear, 2014, 311(1/2): 123-129.
[7] OKTAY A B, GURSES A. Automatic detection, localization and segmentation of nano-particles with deep learning in microscopy images[J]. Micron, 2019, 120: 113-119.
[8] HU Z C, LIU J, JIANG C, et al. A high-precision detection method for coated fuel particles based on improved faster region-based convolutional neural network[J]. Computers in Industry, 2022, 143: 103752.
[9] ZHANG H, ZHAO M, LIU L, et al. Deep multimodel cascade method based on CNN and random forest for pharmaceutical particle detection[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(9): 7028-7042.
[10] LYU H, XU F X, JIN T, et al. Automated detection of multi-class urinary sediment particles: an accurate deep learning approach[J]. Biocybernetics and Biomedical Engineering, 2023, 43(4): 672-683.
[11] SANBORN D, HE R C, FENG L, et al. In situ biological particle analyzer based on digital inline holography[J]. Biotechnology and Bioengineering, 2023, 120(5): 1399-1410.
[12] WANG Z H, ZHOU D, GUO C J, et al. YOLO-Global: a real-time target detector for mineral particles[J]. Journal of Real-Time Image Processing, 2024, 21(3): 85.
[13] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1-9.
[14] DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10881-10890.
[15] CHEN J R, KAO S H, HE H, et al. Run, don??t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[16] MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3138-3147.
[17] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[18] WANG Z, HUA Z X, WEN Y C, et al. E-YOLO: recognition of estrus cow based on improved YOLOv8n model[J]. Expert Systems with Applications, 2024, 238: 122212.
[19] WANG J W, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv:2110. 13389, 2021.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[21] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[22] GUO Y C, ZHANG M Y. Blood cell detection method based on improved YOLOv5[J]. IEEE Access, 2023, 11: 67987-67995.
[23] CAI X H, LAI Q X, WANG Y W, et al. Poly kernel inception network for remote sensing detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 27706-27716.
[24] CHEN Y F, ZHANG C Y, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Computers in Biology and Medicine, 2024, 170: 107917. |