计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 147-158.DOI: 10.3778/j.issn.1002-8331.2502-0107

• 目标检测专题 • 上一篇    下一篇

基于YOLO-RAMS的计算机随机存取存储器插槽旋转检测算法

陈奥,王琨,贺昊辰   

  1. 江南大学 机械工程学院,江苏 无锡 214122
  • 出版日期:2025-09-01 发布日期:2025-09-01

YOLO-RAMS-Based Algorithm for Rotational Detection of Computer Random Access Memory Slot

CHEN Ao, WANG Kun, HE Haochen   

  1. School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2025-09-01 Published:2025-09-01

摘要: 针对计算机随机存取存储器智能化安装场景中,需要快速精确定位插槽和计算其角度等问题,提出一种改进YOLOv8n-obb的计算机随机存取存储器插槽旋转检测算法YOLO-RAMS。在主干高层设计扩张重参数化残差模块,增强网络捕获稀疏模式的能力,充分提取更丰富的语义特征,并构建多速率扩张卷积金字塔模块,提高模型对全局上下文和细节信息的关注度;在颈部设计双重维度感知特征融合扩散网络,专注于对不同维度特征的自适应选择和精细融合,以提升多尺度目标的显著性;在头部设计特征交互动态检测头并添加P2层,增加头部对交互特征的学习以及增强头部的动态特性和小目标的显著性,进一步提高检测精度;引入瓶颈注意力模块,突出关键信息,强化模型表征能力。实验结果表明,YOLO-RAMS的准确率、召回率、mAP@0.5和mAP@0.5:0.95达到89.2%、78.2%、90.1%和57.4%,相比原模型分别提高6.8、4.4、5.7和6.6个百分点,平均角度误差1.7°,参数量为2.69×106,检测帧率达到172.2 FPS,该算法有效减少了误检、漏检及角度误差,具有较优的实际应用性能。

关键词: 随机存取存储器, 旋转检测, YOLOv8n-obb, 扩张重参数化残差, 多速率扩张, 双重维度感知, 特征交互

Abstract: Aiming at the problems of quickly and accurately locating slots and calculating their angles in the intelligent installation scenario of computer random access memory, an improved YOLOv8n-obb computer random access memory slot rotation detection algorithm YOLO-RAMS is proposed. Firstly, the dilated re-parameterized residual module is designed at the high level of the backbone to enhance the ability of the network to capture sparse patterns and fully extract richer semantic features, and the multi-rate dilated convolution pyramid module is constructed to improve the model’s focus on global context and detail information. Secondly, a dual dimensional-aware feature fusion diffusion network is designed in the neck, focusing on adaptive selection and fine fusion of features of different dimensions to enhance the saliency of multiscale targets; and a feature interaction dynamic detection head is designed in the head and added with a P2 layer, increasing the head’s learning of interacting features and enhancing the head’s dynamic characteristics and the saliency of small targets to further improve the detection accuracy. Finally, the bottleneck attention module is introduced to highlight key information and strengthen the model representation capability. The experimental results show that the accuracy, recall, mAP@0.5 and mAP@0.5:0.95 of YOLO-RAMS reach 89.2%, 78.2%, 90.1% and 57.4%, which are 6.8, 4.4, 5.7 and 6.6 percentage points higher than the original model, the average angular error is 1.7°, the number of parameters is 2.69×106, and the detection frame rate reaches 172.2 FPS. The proposed algorithm effectively reduces the false detection, missed detection and angular error, and has superior performance in practical applications.

Key words: random access memory, rotation detection, YOLOv8n-obb, dilated re-parameterized residual, multi-rate dilated, dual dimension-aware, feature interaction