[1] MENG H, TIAN Y, LING Y, et al. Fine-grained ship recognition for complex background based on global to local and progressive learning[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[2] ZHOU L, RAO X, LI Y, et al. A lightweight object detection method in aerial images based on dense feature fusion path aggregation network[J]. ISPRS International Journal of Geo-Information, 2022, 11(3): 189.
[3] 王燕, 吕艳萍. 混合深度CNN联合注意力的高光谱图像分类[J]. 计算机科学与探索, 2023, 17(2): 385-395.
WANG Y, LYU Y P. Hybrid deep CNN-attention for hyperspectral image classification[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 385-395.
[4] MA J, ZHOU Z, WANG B, et al. Ship detection in optical satellite images via directional bounding boxes based on ship center and orientation prediction[J]. Remote Sensing, 2019, 11(18): 2173.
[5] ZHANG Z, ZHANG L, WANG Y, et al. ShipRSImageNet: a large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458-8472.
[6] GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, 2013: 580-587.
[7] GIRSHICK R B. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV), 2015: 1440-1448.
[8] REN S, HE K, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39: 1137-1149.
[9] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37: 1904-1916.
[10] REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 779-788.
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision, 2015: 2096-2104.
[12] 王浩桐, 郭中华. 锚框策略匹配的SSD飞机遥感图像目标检测[J]. 计算机科学与探索, 2022, 16(11): 2596-2608.
WANG H T, GUO Z H. Target detection of SSD aircraft remote sensing images based on anchor frame strategy matching[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2596-2608.
[13] 申浩, 荆一昕. 高分辨率遥感船舶图像细粒度检测方法[J]. 舰船科学技术, 2022, 44(5): 114-117.
SHEN H, JING Y X. Research on fine-grained detection method of high-resolution remote sensing ship images[J]. Ship Science and Technology, 2022, 44(5): 114-117.
[14] ZHANG S, WU R, XU K, et al. R-CNN-based ship detection from high resolution remote sensing imagery[J]. Remote Sensing, 2019, 11(6): 631.
[15] HOU L, LU K, XUE J. Refined one-stage oriented object detection method for remote sensing images[J]. IEEE Transactions on Image Processing, 2022, 31: 1545-1558.
[16] WANG W, ZHANG X, SUN W, et al. A novel method of ship detection under cloud interference for optical remote sensing images[J]. Remote Sensing, 2022, 14(15): 3731.
[17] TAN Z, ZHANG Z, XING T, et al. Exploit direction information for remote ship detection[J]. Remote Sensing, 2021, 13(11): 2155.
[18] ZHU Z, SUN X, DIAO W, et al. Invariant structure representation for remote sensing object detection based on graph modeling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.
[19] XIE X, CHENG G, WANG J, et al. Oriented R-CNN for object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 3500-3509.
[20] LIN T, DOLLáR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 936-944.
[21] LIU Z, WANG H, WENG L, et al. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13: 1074-1078.
[22] LI Y, MAO H, GIRSHICK R B, et al. Exploring plain vision transformer backbones for object detection[J]. arXiv:2203.
16527, 2022.
[23] LIU Y, MA C, HE Z, et al. Unbiased teacher for semi-supervised object detection[J]. arXiv:2102.09480, 2021.
[24] SU N, HUANG Z, YAN Y, et al. Detect larger at once: large-area remote-sensing image arbitrary-oriented ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022(19): 1-5.
[25] PAN X, REN Y, SHENG K, et al. Dynamic refinement network for oriented and densely packed object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 11204-11213.
[26] QIN C, WANG X, LI G, et al. An improved attention-guided network for arbitrary-oriented ship detection in optical remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[27] LIAO M, SHI B, BAI X. TextBoxes++: a single-shot oriented scene text detector[J]. IEEE Transactions on Image Processing, 2018, 27: 3676-3690.
[28] YANG X, LIU Q, YAN J, et al. R3Det: refined single-stage detector with feature refinement for rotating object[C]//AAAI Conference on Artificial Intelligence, 2019: 3163-3171.
[29] HAN J, DING J, LI J, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 60: 1-11.
[30] MA J, SHAO W, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2017, 20: 3111-3122.
[31] LIU L, PAN Z, LEI B. Learning a rotation invariant detector with rotatable bounding box[J]. arXiv:1711.09405, 2017.
[32] DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019: 2844-2853.
[33] XU Y, FU M, WAN Q, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43: 1452-1459.
[34] ZHU T, FERENCZI B, PURKAIT P, et al. Knowledge combination to learn rotated detection without rotated annotation[J]. arXiv:2304.02199, 2023.
[35] HUA W, LIANG D, LI J, et al. SOOD: towards semi-supervised oriented object detection[J]. arXiv:2304.04515, 2023.
[36] SUN S, GU Y, REN M. Fine-grained ship recognition from the horizontal view based on domain adaptation[J]. Sensors, 2022, 22(9): 3243.
[37] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[38] HAN Y, YANG X, PU T, et al. Fine-grained recognition for oriented ship against complex scenes in optical remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-18.
[39] XIA G, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 3974-3983.
[40] ZHOU Y, WANG S, ZHAO J, et al. Fine-grained feature enhancement for object detection in remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2023(19): 1-5.
[41] OUYANG L, FANG L, JI X. Multigranularity self-attention network for fine-grained ship detection in remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9722-9732.
[42] LI J, TIAN J, GAO P, et al. Ship detection and fine-grained recognition in large-format remote sensing images based on convolutional neural network[C]//2020 IEEE International Geoscience and Remote Sensing Symposium, 2020: 2859-2862.
[43] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 770-778.
[44] QIAN W, YANG X, PENG S, et al. Learning modulated loss for rotated object detection[J]. arXiv:1911.08299, 2019.
[45] ZHANG Z, GUO W, ZHU S, et al. Toward arbitrary-oriented ship detection with rotated region proposal and discrimination networks[J]. IEEE Geoscience and Remote Sensing Letters 2018, 15(11): 1745-1749.
[46] MA J, SHAO W, YE H, et al. Arbitrary-oriented scene text detection via rotation proposals[J]. IEEE Transactions on Multimedia, 2017, 20: 3111-3122.
[47] FENG Y, DIAO W, SUN X, et al. Towards automated ship detection and category recognition from high-resolution aerial images[J]. Remote Sensing, 2019, 11(16): 1901.
[48] YANG X, SUN H, FU K, et al. Automatic ship detection in remote sensing images from Google Earth of complex scenes based on multiscale rotation dense feature pyramid networks[J]. Remote Sensing, 2018, 10(1): 132. |