[1] OSCO L P, MARCATO J J, MARQUES R A P, et al. A review on deep learning in UAV remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102456.
[2] ZHU P, WEN L, DU D, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399.
[3] MARVASTI-ZADEH S M, CHENG L, GHANEI-YAKHDAN H, et al. Deep learning for visual tracking: a comprehensive survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3943-3968.
[4] DONG H C, LI Y, LIU R. A detection algorithm based on improved cascade R-CNN for UAV aerial images[C]//Proceedings of the IEEE 3rd International Conference on Electronic Technology, Communication and Information. Piscataway: IEEE, 2023: 700-704.
[5] BISIO I, HALEEM H, GARIBOTTO C, et al. Performance evaluation and analysis of drone-based vehicle detection techniques from deep learning perspective[J]. IEEE Internet of Things Journal, 2022, 9(13): 10920-10935.
[6] SAEED Z, YOUSAF M H, AHMED R, et al. On?board small-scale object detection for unmanned aerial vehicles (UAVs)[J]. Drones, 2023, 7(5): 310.
[7] HOSHINO W, SEO J, YAMAZAKI Y. A study for detecting disaster victims using multi-copter drone with a thermographic camera and image object recognition by SSD[C]//Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway: IEEE, 2021: 162-167.
[8] BETTI SORBELLI F, PALAZZETTI L, PINOTTI C M. YOLO-based detection of Halyomorpha Halys in orchards using RGB cameras and drones[J]. Computers and Electronics in Agriculture, 2023, 213: 108228.
[9] TERVEN J, CóRDOVA-ESPARZA D M, ROMERO-GONZáLEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO-NAS[J]. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680-1716.
[10] LI Y T, FAN Q S, HUANG H S, et al. A modified YOLOv8 detection network for UAV aerial image recognition[J]. Drones, 2023, 7(5): 304.
[11] XIONG X R, HE M T, LI T Y, et al. Adaptive feature fusion and improved attention mechanism-based small object detection for UAV target tracking[J]. IEEE Internet of Things Journal, 2024, 11(12): 21239-21249.
[12] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[13] 李峻宇, 刘乾坤, 付莹. 融合注意力机制的红外小目标检测[J]. 航空学报, 2024, 45(14): 90-101.
LI J Y, LIU Q K, FU Y. Infrared small target detection based on attention mechanism[J]. Acta Aeronautica ET Astronautica Sinica, 2024, 45(14): 90-101.
[14] 孙佳宇, 徐民俊, 张俊鹏, 等. 优化改进YOLOv8无人机视角下目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 109-120.
SUN J Y, XU M J, ZHANG J P, et al. Optimized and improved YOLOv8 target detection algorithm from UAV perspective[J]. Computer Engineering and Applications, 2025, 61(1): 109-120.
[15] 梁秀满, 贾梓涵, 刘振东, 等. 改进YOLOv8n的无人机航拍图像检测算法[J]. 电光与控制, 2025, 32(1): 34-40.
LIANG X M, JIA Z H, LIU Z D, et al. Improved YOLOv8n drone aerial image detection algorithm[J]. Electro-Optical & Control, 2025, 32(1): 34-40.
[16] 潘玮, 韦超, 钱春雨, 等. 面向无人机视角下小目标检测的YOLOv8s改进模型[J]. 计算机工程与应用, 2024, 60(9): 142-150.
PAN W, WEI C, QIAN C Y, et al. Improved YOLOv8s model for small object detection from perspective of drones[J]. Computer Engineering and Applications, 2024, 60(9): 142-150.
[17] 廖宁生, 曹天秀, 刘科言, 等. 复合特征与多尺度融合的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(3): 111-120.
LIAO N S, CAO T X, LIU K Y, et al. Small target detection algorithm for UAV based on composite feature and multi-scale fusion[J]. Computer Engineering and Applications, 2025, 61(3): 111-120.
[18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[19] JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 816-832.
[20] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[21] PARK N, KIM S. How do vision transformers work?[J]. arXiv:2202.06709, 2022.
[22] DAI T, WANG J P, GUO H, et al. FreqFormer: frequency-aware transformer for lightweight image super-resolution[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence, 2024: 731-739.
[23] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10778-10787.
[24] RAHMAN M M, MUNIR M, MARCULESCU R. EMCAD: efficient multi-scale convolutional attention decoding for medical image segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 11769-11779.
[25] MARK S, ANDREW H, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[26] CHEN J, MAI H S, LUO L B, et al. Effective feature fusion network in BIFPN for small object detection[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 699-703.
[27] TANG F L, XU Z X, HUANG Q M, et al. DuAT: dual-aggregation transformer network for medical image segmentation[C]//Proceedings of the Pattern Recognition and Computer Vision. Singapore: Springer Nature Singapore, 2024: 343-356.
[28] FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[J]. arXiv:2006. 11392, 2020.
[29] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[30] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[31] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[32] ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[33] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[34] ZHU P F, DU D W, WEN L Y, et al. VisDrone-VID2019: the vision meets drone object detection in video challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop. Piscataway: IEEE, 2019: 227-235.
[35] 张智, 易华挥, 郑锦. 聚焦小目标的航拍图像目标检测算法[J]. 电子学报, 2023, 51(4): 944-955.
ZHANG Z, YI H H, ZHENG J. Focusing on small objects detector in aerial images[J]. Acta Electonica Sinica, 2023, 51(4): 944-955.
[36] FARAJI H, CHEN B C. Drone-YOLO: improved YOLO for small object detection in UAV[C]//Proceedings of the 8th International Conference on Image, Vision and Computing. Piscataway: IEEE, 2023: 93-100.
[37] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3974-3983. |